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Abstract

We investigate the following family of evolutionary 141 PDEs that
describe the balance between convection and stretching for small vis-
cosity in the dynamics of 1D nonlinear waves in fluids:

mg + umy + bugm = vmy, , with u=gxm.

——— ~—— ——
convection stretching  viscosity

Here u = g*m denotes u(z) = [%_g(x—y)m(y) dy . This convolution

(or filtering) relates velocity u to momentum density m by integration

against the kernel g(x). We shall choose g(x) to be an even function,

so that u and m have the same parity under spatial reflection. When

v = 0, this equation is both reversible in time and parity invariant.

We shall study the effects of the balance parameter b and the kernel
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g(x) on the solitary wave structures, and investigate their interactions
analytically for v = 0 and numerically for small or zero viscosity.

This family of equations admits the classic Burgers “ramps and
cliffs” solutions, which are stable for —1 < b < 1 with small viscosity.

For b < —1, the Burgers ramps and cliffs are unstable. The stable
solution for b < —1 moves leftward instead of rightward and tends to
a stationary profile. When m = u — o?u,, and v = 0, this profile is
given by u(z) ~ sech?(z/(2a)) for b = —2, and by u(z) ~ sech(z/a)
for b = —3.

For b > 1, the Burgers ramps and cliffs are again unstable. The
stable solitary traveling wave for b > 1 and v = 0 is the “pulson”
u(z,t) = cg(x — ct), which restricts to the “peakon” in the special
case g(x) = e */® when m = u — a®ug,. Nonlinear interactions
among these pulsons or peakons are governed by the superposition of
solutions for b > 1 and v = 0,

N N
m(z,t) = pi(t)6(z — q:(t)), ulz,t) = pit) glx — q(t)).
i=1 =1

These pulson solutions obey a finite dimensional dynamical system
for the time-dependent speeds p;(t) and positions ¢;(t). We study the
pulson and peakon interactions analytically, and we determine their
fate numerically under adding viscosity.

Finally, as outlook, we propose an n—dimensional vector version
of this evolutionary equation with convection and stretching, namely,

%er u-Vm, + Vu' m+ (b—1)m(divu) =0,

. v
convection stretching

for a defining relation, u = G * m. These solutions show quasi-one-
dimensional behavior for n,k = 2,1 that we find numerically to be
stable for b = 2. The corresponding superposed solutions of the vector
b—equation in n—dimensions exist, with coordinates x € R", s € RF,
n—k >0, and 2N parameters P;(s,t), Q;(s,t) € R",

N
m(x,t) = Z/Pi(s,t)d(x—Qi(s,t))ds, m € R",
i=1

N
u(x,t) = Z/Pi(s,t)G(x—Qi(s,t))ds, ueR".
=1
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These are momentum surfaces (or filaments, for k& = 1), defined on
surfaces (or curves), x = Q;(s,t), i = 1,2,...,N. For b = 2, the
P;(s,t),Q;(s,t) € R™ satisfy canonical Hamiltonian equations for
geodesic motion on the space of n—vector valued k—surfaces with
co-metric G.
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1 Introduction

1.1 The b-family of fluid transport equations

We shall investigate a one-dimensional version of fluid convection and stretch-
ing that is described by the following family of 141 evolutionary equations,

my + umy; + buym = 0, with u=g*xm, (1)
N—_——r N——
convection stretching

in independent variables time ¢ and one spatial coordinate x.

We shall seek solutions for the fluid velocity u(x,t) that are defined ei-
ther on the real line and vanishing at spatial infinity, or on a periodic one-
dimensional domain. Here u = g x m denotes the convolution (or filtering),

o

ulw) = [ gl — yymly) dy @)
—0o0

which relates velocity u to momentum density m by integration against kernel

g(x) over the real line. We shall choose g(z) in the defining relation (2) to

be an even function, so that u and m have the same parity.

The family of equations (1) is characterized by the kernel g and the real
dimensionless constant b, which is the ratio of stretching to convection. The
function g(z) will determine the traveling wave shape and length scale for
equation (1), while the constant b will provide a balance or bifurcation pa-
rameter for the nonlinear solution behavior. Special values of b will include
the first few positive and negative integers.

The quadratic terms in equation (1) represent the competition, or bal-
ance, in fluid convection between nonlinear steepening and amplification due
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to b—dimensional stretching. Equation (1) with b # —1 arises in the nonlin-
ear dynamics of shallow water waves, as shown in [7, 17, 18]. Equation (1)
with b = 2 and b = 3 appears in the theory of integrable partial differen-
tial equations [7, 17, 15]. The three-dimensional analog of equation (1) with
b = 2 was introduced in a larger variational context in [26, 27]. Applying the
proper viscosity to this three-dimensional analog with b = 2 and enforcing
incompressibility produces the Navier-Stokes-alpha model of turbulence [9].
The 1D version of this turbulence model is

my + um + buym = vm with w=gxm. 3
t :r. x . acac 9 g ( )
convection stretching  viscosity

We shall compare our analysis of equation (1) with numerical simulations of
(3), for small viscosity.

1.2 OQOutline of the paper

After summarizing previous investigations of particular cases in the b-family
of convection equations (1), section 2 discusses its symmetries and other
general properties such as parity and reversibility. Section 3 discusses the
derivation of the b—equation (1) among a family of asymptotically equivalent
equations for unidirectional shallow water waves. Section 4 discusses the
traveling waves for equation (1) and derives their pulson solutions, which
may be generalized functions for b > 1. Section 5 analyzes the interaction
dynamics of the pulson solutions for any positive b and any ¢. Section 6
specializes the analysis of the pulson solutions to the peakons, for which
g(z) = e71?l/* is a peaked pulse of width o, and b is taken to be arbitrary. In
section 7 we add viscosity to the peakon equation, and describe our numerical
methods for illustrating the different types of behavior that may arise in the
initial value problems for peakon solutions with b > 0, b = 0 and b < —1.
Section 8 uses these numerical methods to determine how viscosity affects the
fate of the peakons. Section 9 provides a synopsis of the figures. Section 10
summarizes the paper’s main conclusions and section 11 provides the outlook
for generalizing the present work to higher dimensions.
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2 History and general properties of the b-
equation

Camassa and Holm [7] derived the following equation for unidirectional mo-
tion of shallow water waves in a particular Galilean frame,

my + umy 4+ 2Uym = —ColUy — Y Upe , With m = u— o uy,. (4)
~—— A,_/ ~ ~ ~
convection stretching dispersion

Here m = u — a®u,, is a momentum variable, partial derivatives are denoted

by subscripts, the constants a? and «/cy are squares of length scales, and
co = v/¢'h is the linear wave speed for undisturbed water of depth h at rest
under gravity ¢’ at spatial infinity, where v and m are taken to vanish. Any
constant value u = ug is also a solution of (4).

Equation (4) was derived using Hamiltonian methods in [7] and was shown
in [17] also to appear as a water wave equation at quadratic order in the
asymptotic expansion for unidirectional shallow water waves in terms of their
two small parameters (aspect ratio and wave height). The famous Korteweg-
de Vries (KdV) equation appears at linear order in this asymptotic expansion
and is recovered from equation (4) when a? — 0. Both KdV at linear order
and its nonlocal, nonlinear generalization in equation (4) at quadratic order in
this expansion have the remarkable property of being completely integrable
by the isospectral transform (IST) method. The IST properties of KdV
solitons are well known. The IST properties of equation (4) were discovered
in [7] and were analyzed completely for the case that the initial distribution
of momentum m(x,0) does not change sign in [6]. See also [10] for additional
analysis of the scattering problem for the CH equation for this class of initial
conditions. For an initial distribution of momentum that changes sign, the
IST properties of the CH equation (4) remains an open problem.
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3 Deriving b—equation (1) for shallow water

3.1 Linear and nonlinear balances in shallow water
waves

The primary physical mechanism for the unidirectional propagation of soli-
tary shallow water waves is the balance between nonlinear steepening and
linear dispersion. This balance is nearly unique at linear order in an asymp-
totic expansion in the Korteweg-de Vries equation (KdV),

3e 3e
u; + Cotls +¥71uux + 2—02 Uare = 0. (5)
Propagation Balance

Here the expansion parameters satisfy ¢; > €, > €2 and are defined by
€1 = a/h and €3 = h?/I?, in terms of wave amplitude a, mean water depth A,
and typical horizontal length scale [ (e.g., a wavelength). KdV possesses the
famous sech? solitary wave solution u(z,t) = ugsech?((x — ct)+/uo/v/2), for
ug = 2(c — ¢o)/e1 and v = 3ea/(5€ ); see [1].

The Benjamin-Bona-Mahoney equation (BBM)

3€ €y _
Us + COU.:C +¥71uu$ - 2—0260 ! UxxtJ =0, (6)
Propagation Balance

has a solitary wave with the same sech? shape, but with + replaced by v/ =
cy/co; see [1]. BBM is asymptotically equivalent to KdV at order O(eq, €3).
In comparison, the linear dispersion relation for BBM matches the exact
relation for shallow water waves better than KdV. However, KdV is Galilean
invariant, while BBM is not. And, of course, KdV is a completely integrable
soliton equation, while BBM is not.

Beyond KdV and BBM at linear order, the asymptotic expansion at
quadratic order in the small parameters ¢; and €, produces an infinite fam-
ily of shallow water wave equations that are asymptotically equivalent to
each other at quadratic order in the shallow water expansion parameters
[18]. The equations in this family are related to each other by a continuous,
three-parameter group of nonlinear, nonlocal transformations of variables
introduced in [33],

u=7v-+ €1 (G1U2 + aQU:ua;lv) + €203Vxy , (7)
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in which (ay, as, a3) are the three real parameters of the group. This trans-
formation group was first introduced for determining normal forms of asymp-
totic shallow water wave equations by Kodama in [33].

Among the family of asymptotically equivalent shallow water wave equa-
tions at quadratic order accuracy in the small parameters ¢; = a/h and
€ = h%/I? are several equations that are completely integrable. As for KdV
at linear order, these integrable shallow water equations at quadratic order
possess soliton solutions that interact via elastic collisions. In particular, the
equation in the KdV hierarchy with fifth-order derivatives (KdV5) appears
amongst these integrable equations, as shown in [35].

The family of asymptotically equivalent shallow water equations that
emerges at quadratic order accuracy also contains the following sub-family
derived in [18] in which the constant parameter b depends on the group pa-
rameters (a1, as,as) appearing in the Kodama transformation (7),

3
my + oy + €1 (umy + bmuy) + %umx =0, (8)

where m = u — (19¢3/60)u,,. For any b # —1, an asymptotically equivalent
shallow water equation may be achieved by a Kodama transformation. How-
ever, the case b = —1 violates the asymptotic ordering and the corresponding
Kodama transformation is singular for b = —1, [18]. Notice that equation
(8) is mot Galilean invariant.

The cases b = 2 and b = 3 are special values for the b—equation (8).
The case b = 2 restricts (8) to the integrable Camassa-Holm equation (CH)
[7]. The case b = 3 in (8) recovers the Degasperis-Procesi equation (DP)
[16], which was shown to be integrable in [15]. These two cases exhaust the
integrable candidates for (8), as was shown using Painlevé analysis in [15].
The b-family of equations (8) was also shown in [36] to admit the symmetry

conditions necessary for integrability only in the cases b = 2 for CH and
b = 3 for DP.

3.2 Other work related to equation (8) with b =2

Equation (8) with b = 2 was first derived by using asymptotic expansions
directly in the Hamiltonian for Euler’s equations in the shallow water regime
and was thereby shown to be bi-Hamiltonian and IST-integrable in [7]. Ad-
ditional details of its derivation and the analysis of its peakon solutions, as
well as a numerical solution of the initial value problem for equation (8) with
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b = 2 were provided in [8]. Its periodic solutions were treated in [2, 3, 4, 5]
and references therein.

Equation (8) with b = 2 was recently re-derived as a shallow water
equation by using asymptotic methods via three different approaches in
[21, 17, 32]. These three derivations used different variants of the method
of asymptotic expansions for shallow water waves. A recent paper [14] also
obtains equation (8) with b = 2 as a model for waves in hyperelastic rods.

Hereditary symmetries The paper [19] rederives equation (8) with b = 2
from general asymptotic considerations and claims that the equation was
already obtained in [24], [23] by the theory of hereditary symmetries. Indeed,
before [7], families of integrable equations similar to equation (8) with b =
2 could have been obtained amidst a comprehensive list of other integrable
equations provided by the theory of hereditary symmetries [20]. However,
the integrable equation (8) with b = 2 was not written explicitly, nor was
it derived physically as a water wave equation, and its solution properties
were not studied before [7]. See [25] for an insightful discussion of how
the integrable equation (8) with b = 2 relates to the theory of hereditary
symmetries.

3.3 Higher-order nonlinear/nonlocal integrable balance

KdV in equation (5) and the cases b = 2 (CH) and b = 3 (DP) of equation
(8) are three completely integrable Hamiltonian equations that possess soli-
tons as traveling waves. In all of these equations, the leading order balance
that confines the traveling wave soliton occurs between nonlinear steepening
and linear dispersion. Physically, this is also the leading order asymptotic
balance for shallow water waves. However, the parameter b in equation (8)
introduces additional possibilities for higher-order balances, including the
nonlinear /nonlocal balance occurring in the following dispersionless case of
CH that was studied previously for b = 2 in [7],

2Upp and  lim u =0. (9)

my+ umg +bmu, =0, withm=u—«
—_—— |z} —>00

Nonlinear balance

To obtain equation (9) from (8), one absorbs the linear dispersion terms in
(8) by a Galilean transformation and a velocity shift, followed by a rescaling.
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Recall that equation (8) is not Galilean invariant; so Galilean transforma-
tions do not preserve the functional form of its solutions. Even in the absence
of linear dispersion, the nonlinear and nonlocal terms that remain in equa-
tion (9) can still balance to produce a confined solitary traveling wave pulse
u(z,t) = ce”1==¢/e called the peakon [7].

The peakon solutions and other properties of dispersionless DP for the
case b = 3 in equation (9) were studied in [15]. The properties of the class
of dispersionless equations consisting of (9) for b = 2 with the more general
defining relation v = g * m in (2) for any even kernel g(z) = g(—x) were
studied in [22]. The CH peakon case is recovered for g(z) = e~l#l/.

The peakon solution of equation (9) moves with speed equal to its am-
plitude and has a jump in derivative at its peak. Peakons for either b = 2
or b = 3 are true solitons that interact via elastic collisions under CH dy-
namics, or DP dynamics, respectively, [7], [15]. In addition, the CH and DP
initial value problems are both completely integrable as Hamiltonian systems
by using the inverse spectral transform (IST) method for an isospectral lin-
ear eigenvalue problem whose purely discrete spectrum gives the asymptotic
speeds of the peakons [7], [15]. Figure 2 shows the evolution under disper-
sionless CH for the case b = 2 in equation (9) of a Gaussian initial velocity
distribution of unit area and width 5a. In fact, peakon solutions exist for
equation (9) with any value of b. However, we shall find numerically that
the stability of these peakon solutions requires b > 1. For the case b = 2,
stability of the single peakon was proved in [13].

Burgers equation The dispersionless limit of KdV in (5) upon rescaling
velocity w is the Burgers equation,

Up + Uly — V Uy = 0, (10)

in which we have added constant viscosity v. The Burgers solution is the
classic ramp and cliff shown arising from a Gaussian initial condition in Fig-
ure 1. In the ramp/cliff solution, nonlinear steepening is balanced by linear
viscosity to produce the “cliff” whose width is controlled by the magnitude
of v. The “ramp” is the self-similar v ~ x/t part of the solution for which
the viscous term vanishes.

Total momentum The equations KdV, BBM, CH, DP, the other b equa-
tions (9) with u = g * m and Burgers all preserve the area M = [ udx
(total momentum) for a solution v that vanishes at spatial infinity.
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3.3.1 CH peakon solutions

Linear dispersion was absorbed in (8) by a Galilean transformation and a
velocity shift. For b = 2, this procedure reduces the CH equation (4) with
linear dispersion to the following purely nonlinear evolution equation that
contains competing quadratically nonlinear terms representing convection
and stretching,

my + umy + 2uym = 0, with m=u— ouy,. (11)
——r’ e —

convection stretching

This is a special case of equation (1), or (9), for which b = 2 and g(x) =
e~1#l/e in the defining relation (2). The traveling wave solution of (11) is
the “peakon,” u(x,t) = ce”1*~°/® found in [7], where e~ 1#I/® is the Green’s
function for the Helmholtz operator that relates m and u. The interactions
among N peakons are governed by the 2N dimensional dynamical system for
the speeds p;(t) and positions ¢;(t), i = 1,..., N, appearing in the superposed
solution,

u(z,t) = ipi(t) e~lz=a®l, (12)

As shown in Camassa and Holm [7], a closed integrable Hamiltonian system of
ordinary differential equations for the speeds p;(t) and positions ¢;(t) results
upon substituting the superposition of peakons (12) into equation (11). This
integrable system governs the dynamics of the peakon interactions.

A variant of equation (11) with coefficient b =2 — b = 3,

me + uwmgy + 3uym = 0, with m=u— o’uy, (13)
———r e —

convection stretching

was first singled out for further analysis by Degasperis and Procesi [16]. De-
gasperis, Holm and Hone [15] discovered that this b = 2 — b = 3 variant of
equation (11) also possesses superposed peakon solutions (12) and is com-
pletely integrable by the isospectral transform method. Thus, the N—peakon
solution (12) is a completely integrable dynamical system under the evolution
of either (11) or (13), but these two integrable cases have different dynam-
ics for the speeds p;(t) and positions ¢;(t) of the peakons. The proof that
N —peakon solutions (12) exist for any b in equation (9) follows by direct
substitution of the solution ansatz into the equation.
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3.3.2 FH pulson solutions

Fringer and Holm [22] extended the zero-dispersion shallow water equation
(11) for the peakons to the “pulson” equation, which is contained in the
family of equations (1) for b = 2,

m; + wumgy + 2uy;m = 0, with u=g*m. (14)
——r’ e —

convection stretching

Here u = g * m denotes the convolution (or filtering),

o0

uw) = [ gl ~y)miy) dy, (15)
—0oQ

that relates velocity u to momentum density m by integration against the
kernel g(z). Fringer and Holm [22] chose g(x) to be an even function, so that
u and m have the same parity. They studied the effects of the shape of the
traveling wave u(z,t) = cg(x — ct) on its interactions with other traveling
waves in the superposed solution,

u(w,t) = Yot gle = (1), (16)

This superposed solution of traveling wave forms with time dependent speeds
pi(t) and positions ¢;(t),i = 1,..., N, revealed that the nonlinear interactions
among these pulsons occur by elastic two-pulson scattering, even though the
Fringer-Holm pulson equation (14) is not integrable for an arbitrary choice
of the kernel g. When g(z) = e~l*l/* is assumed, the pulson equation for
b =2 in (14) specializes to the peakon equation for b = 2 in (11). The proof
that N—pulson solutions (16) exist for any b in equation (1), or (14), follows
by direct substitution of the solution ansatz into the equation. The resulting
reduced, or collective, dynamics for the speeds p;(t) and positions ¢;(t) of the
pulsons depends upon the value of b in (14) and the choice of the function g
in the defining relation (15).

3.4 Discrete symmetries: reversibility, parity and sig-
nature

Equation (1) for m is reversible, or invariant under ¢t — —t and v — —u.
The latter implies m — —m. Hence, the transformation u(x,t) — —u(x, —t)
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takes solutions into solutions, and in particular, it reverses the direction and
amplitude of the traveling wave u(z,t) = cg(x — ct).

We chose g(x) to be an even function so that m and u = g*m would both
have odd parity under mirror reflections. Hence, equation (1) is invariant
under the parity reflections u(x,t) — —u(—=x,t), and the solutions of even
and odd parity form invariant subspaces.

Equation (1) implies a similar reversible, parity invariant equation for the
absolute value |m)|,

Oy m| + ulm|y + buym| =0, with uw=gxm. (17)

So, the positive and negative components my = 1(m = |m/|) satisfy equation
(1) separately. Also, if m is initially zero, it remains so. This is conservation
of the signature of m.

3.5 Lagrangian representation

If m!/? is well-defined, equation (1) may be written as the conservation law
9y m*® + 0, (m'/’u) = 0, (18)
and equation (17) for the absolute value implies
Oy Im|Y + 0, (Im|Y%u) = 0. (19)
Adding and subtracting equations (18) and (19) implies
9y (m'%) 4 + Bx((ml/b)iu) =0 with (m'/%), = %(ml/b + |m[Y%) . (20)
Consequently, regions of positive and negative m are both transported by

the velocity u = g * m and their boundaries propagate so as to separately
preserve the two integrals,

[ m)de. (21)

The shared velocity relation u = g*m allows a transformation to Lagrangian
coordinates X, defined by

dXy = (m'*)(de — udt) sothat 9,Xi+udpXs=0. (22)



D. D. Holm & M. F. Staley ~Wave Structures and Nonlinear Balances 15

This formal transformation is not strictly defined where (m!/*). vanishes.
However, by equation (20), regions where (m!/*). vanishes do not propagate
and do not contribute to the integrated value of Xy = [*_(m'/*).(y,0) dy.
Hence, these regions may be identified and excluded initially. The formal
inverse relation holding in the remaining regions,

dr = (m**)7'dXy + udt, (23)
implies that
dx
E Xa = U(.I', t) ’ (24)

so the Lagrangian trajectories + = x(X4,t) of positive and negative inte-
grated initial values of X1 = ffoo(ml/b)i(y,O) dy are transported by the
same velocity u = g * m.

3.6 Preservation of the norm ||m||;1» for 0 <b <1

If |m|'/* is well-defined, the continuity equation form (19) of equation (1)
implies conservation of

/ |m|l/bdx:/ imo|** dz,  where mg(z) = m(x,0). (25)

o0 —00

This integral is conserved for all b, but only defines a norm (the L'/® norm
|lm|| 1) in the closed interval 0 < b < 1. In the limit & — 0 this becomes
the Lo norm, |m|mqe. Hence, when b = 0, equation (1) has both a maximum
principle and a minimum principle for m. Such a principle is meaningful only
if m'/* is an ordinary function, e.g., if m is not a generalized function, such
as the delta functions that occur for the peakons we shall discuss below.

Thus, the L*/* norm ||m)|| 1/ is conserved by equation (1), provided |m)|
is well-defined for the closed interval 0 < b < 1. One may also define the
corresponding conserved norm for 1/m in the closed interval —1 < b < 0,
provided |1/m|'/® is well-defined on this interval.

1/b

3.7 Lagrangian representation for integer b

Fluid convection means transport of a quantity by the fluid motion. Exam-
ples of transported fluid quantities are circulation (a one-form) in Kelvin’s
theorem for the Euler equations, and its exterior derivative the vorticity (a
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two-form, by Stokes theorem) in the Helmholtz equation. For a Lagrangian
trajectory x(X,t) satisfying z(X,0) = X and

dr = (m**)~'dX + udt, (26)
we have seen that the conservation law (18) implies
m'*(z,t)dz = m'/*(X,0)dX , (27)

provided that m!/? is a well defined function. The last issue may be avoided
when b is an integer, as follows. In 1D, higher order differential forms may
be created by using the direct, or tensor, product, e.g., dz @ dz = da®?.
Consequently, the tensor product of each side of equation (27) b times gives'

m(z,t)dz® = m(X,0)dX®". (28)

Taking the partial time derivative of this equation at constant Lagrangian
coordinate X and using dz/dt|x = u yields equation (1) in the form

%‘X (m(xa t)dl"@b) = (my + um, + buxm)d:c@b =0. (29)

Thus, when the parameter b in equation (1) is an integer, it may be regarded
geometrically as the number of dimensions that are brought into play by
coordinate transformations of the quantity m dz®® associated with m. Cases
of equation (1) with negative integer b < 0 may be interpreted as

d o(-b) ) _
2 (m(@)" ") = 0. (30)
For example, the case b = —1 may be written as?
d
@‘X(mam) = (my +umy, — uym)0, =0, (31)

in which the difference of terms (um, — u,m)d, is the commutator of the
vector fields u0, and md, on the real line. The rest of the paper will remain
in the Eulerian (spatial) representation.

1 Cases with positive integer values of b will allow m to be a generalized function. Cases
with non-integer values of b will revert to equation (27) for which m is required to be a
classical function.

2Remarkably, this nonlinear equation for b = —1 has stationary plane wave solutions,
u(x) = cos(kx), and exponential solutions, u(zx) = e*"=.



D. D. Holm & M. F. Staley ~Wave Structures and Nonlinear Balances 17

3.8 Reversibility and Galilean covariance

Equation (1) is reversible, i.e., it is invariant under the discrete transforma-
tion u(x,t) — —u(x, —t). Equation (1) is also Galilean-covariant for all b.
In fact, equation (1) keeps its form under transformations to an arbitrarily
moving reference frame for all b. This includes covariance under transforming
to a uniformly moving Galilean frame. However, only in the case b = 0 is
equation (1) Galilean invariant, assuming that m Galileo-transforms in the
same way as u. If so, then equation (1) transforms under

t—t+ty, z—x+ax9+ct, u—utct+ug, m—>m+c+ug, (32)
to the form
my + umyg + bugy m + ugmy + buz(c+ug) =0, with u=gxm. (33)

Thus, equation (1) is invariant under space and time translations (constants
xo and tg), covariant under Galilean transforms (constant c¢), and acquires
linear dispersion terms under velocity shifts (constant ug). Equation (1)
regains Galilean invariance if m is Galilean invariant. However, the disper-
sive term wugm, introduced by the constant velocity shift ug # 0 breaks the
reversibility of equation (1) even if m is invariant under this shift.

3.9 Integral momentum conservation

Equation (18) implies that M = [ m dx is conserved for any g when b = 1.
However, when g(x) is even, the family of equations (1) also conserves the
total momentum integral M for any b. This is shown by directly calculating
from (1) that

% m(z) dz = 1—b/ / —y)m(y)dzdy =0, (34)

in which the double integral vanishes as the product of an even function and
an odd function under interchange of = and y, when ¢'(—x) = —g'(z). Hence,
for even g(x), M = ffooomdx is conserved for either periodic or vanishing
boundary conditions and for any b. We shall assume henceforth that g(z) is
even and, moreover, that the integral J m g*mdx is sign-definite, so that it
defines a norm (the kinetic energy),

Imll2 = /mg*mdx—// —y)ym(y)dedy>0.  (35)

This kinetic energy norm is conserved by equation (1), provided b = 2.
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4 Traveling waves and generalized functions

Its invariance under space and time translations ensures that equation (1)
admits traveling wave solutions for any b. Let us write the traveling wave
solutions as

u=u(z) and m=m(z), where z=uz—ct, (36)

and let prime ' denote d/dz.

4.1 Case b=0
4.1.1 Pulsons for b =0

For b = 0, equation (1) is Galilean invariant and its traveling wave solutions
satisfy

(u(z) —e)ym'(z) =0, z=ux—ct, (37)
where prime ' denotes d/dz. Equation (37) admits generalized functions

m'(z) =~ §(z) matched by u —c =0 at z = 0. The velocity u is given by the
integral of the Green’s function that relates m and u = g * m,

u—c:c[/g(y)dy]:. (38)

4.1.2 Peakons, ramps, and cliffs for b =0
When g(z) = e~®//® (the Green’s function for the 1D Helmholtz operator),

we have m = u—a’u,,. Consequently, the equation m’ = v’ —ou" = £26(z2)

with u — ¢ =0 at z = 0 is satisfied by

u—c= :l:c[/e_yva dy]z = +c sgn(z) (1 — e"zW) . (39)

This represents a rightward moving traveling wave that connects the left
states u — ¢ = % to the same two right states.

Definition 4.1 (Peakons) The symmetric solutions u = +ce™/* with a
Jump in derivative at z = 0, are the peakons, for which m = u — o®uy, and
g(x) = e ll/e,
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Definition 4.2 (Cliffs) The antisymmetric solutions u = “csgn(z)(1 —
e~ #/%) (with u — ¢ = £¢ connecting to u — c = Fc), with no jump in deriva-
twe at z = 0, are the reqularized shocks (cliffs). These propagate rightward
but may face either leftward or rightward, because equation (1) in the absence
of wiscosity has no entropy condition that would distinguish between leftward
and rightward facing solutions. For more discussion of entropy conditions
for the cliff solutions, see [28].

Definition 4.3 (Ramps) FEquation (1) also has ramp-like similarity solu-
tions u ~ x/t when g(z) = e 1/ for any b. These may emerge in the
initial value problem for the peakon case of equation (1) and interact with
the peakons and cliffs.

Remark 4.4 (First integral for b = 0 traveling waves) For b = 0, the
traveling wave equation (37) apparently has only the first integral for m =
U — 0Py,

2 a2

(u—c)(u — o*u") — % + 71/2 =K. (40)

Thus, perhaps surprisingly, we have been unable to find a second integral for
the traveling wave equation for peakons when b = 0.

Remark 4.5 (Reversibility) Reversibility means that equation (1) is in-
variant under the transformation u(x,t) — —u(x,—t). Consequently, the
rightward traveling waves have leftward moving counterparts under the sym-
metry ¢ — —c. The case of constant velocity u = *c is also a solution.

Figure 1 shows that the ramp and cliff pattern develops in the veloc-
ity profile under the peakon equation (1) with g(x) = e~*l/® for a set of
Gaussian initial conditions (51/7)~" exp(—(x — 50)?/w) of increasing widths
w=2.5,5,10, for « = 1 and b = 0. Apparently, the ramp solution is numer-
ically stable, but the coexisting peakon solution is not stable in this case. A
complete stability analysis of these various solutions is outside the scope of
the present paper. Instead we shall investigate the solutions of equation (1)
by numerically integrating selected examples.
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Figure 1: Ramps and cliffs for b = 0. Inviscid b-family, b = 0, a = 1,
initial width w = 2.5, 5, 10.
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4.2 Case b+#0

For b # 0, the conservation law (18) for traveling waves becomes

((u - c)ml/b> '=0, (41)
which yields after one integration
(u—c)'m = K, (42)

where K is the first integral. For g(z) = e1®//% so that m = u — oy, this
becomes

(u—c)(u—a*u")=K. (43)
For u — ¢ # 0 we rewrite this as
u" =u—K(u—c)™ (44)

and integrate again to give the second integral in two separate cases,

5 2 {u2—ﬂ(u—0)1_b+2H for b#1,

o?u 1-b

u? —2Klog(u—c)+2H for b=1.
We shall rearrange this into quadratures:
dz du
+— = 7z for b#1, (45)
[uQ — 2K (u—c)-t+ QH}

«

and p p
+ % - “ for b=1. (46)

12
@ [u2 — 2K log(u —¢) + 2H}

For b =1 and K # 0, the integral in equation (46) is transcendental.

4.2.1 Special cases of traveling waves for b # 0

e For K = 0 the two quadratures (45) and (46) are equal, independent
of b, and elementary, thereby yielding the traveling wave solutions

o—lelfa _ ut VU 4 2H
c+Ve2+2H’

(47)

with u —c=0 at z =0.
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e For H = 0 equation (47) recovers the peakon traveling wave.

e For H > 0 equation (47) gives a rightward moving traveling wave that
is a continuous deformation of the peakon.

e For H > 0 and ¢ = 0 equation (47) gives stationary solutions of the

form

u+Vu2+2H ~ e e, (48)

4.3 Caseb>0
4.3.1 Pulsons for b > 0

Equation (1) for & > 0 has nontrivial solutions vanishing as |z| — oo that
allow K = 0 in equation (42), so that

(u—c)’m=0. (49)
This admits the generalized function solutions
m=cd(z) and wu=gxm=-cg(z), (50)

matched by v — ¢ =0 at z = 0. This is the pulson traveling wave, whose
shape in u is given by the kernel g. The constant velocity case u = c is a
trivial traveling wave.

Remark 4.6 (Pulson and peakon traveling waves) The pulson solution
(50) requires g(0) =1 and g'(0) = 0. We shall assume for definiteness that
the even function g(z) achieves its mazimum at g(0) = 1, so that the sym-
metric pulson traveling wave u(x,t) = cg(x — ct) moves at the speed of its
mazimum, which occurs at its center of symmetry. For example, the peakon
u(z,t) = ce” = moves at the speed of its peak.

4.3.2 Peakons for b > 1
Equation (43), for which g(z) = e~/ yields the peakon traveling wave,
u(z) = ce ' and m(z) = u — Pu" = 2¢(z/a) (51)

when K = 0.



D. D. Holm & M. F. Staley ~Wave Structures and Nonlinear Balances 23

200

150

100

50

1500

1000

2500

2000

1500

1000

200

150

100

50

2500

2000

1500

1000

500

initial width

)

=1

«

I

-family, b = 2

Inviscid b

2: Peakons for b = 2

w = 2.5,5, 10.

Figure



D. D. Holm & M. F. Staley ~Wave Structures and Nonlinear Balances 24

Figure 3: Peakons for b = 3. Inviscid b-family, b = 3, o = 1, initial width
w = 2.5,5, 10.
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Figures 2 and 3 show the effects of varying the width w of a Gaussian
initial condition (51/7) ! exp(—(z — 50)?/w) for the peakon equation in a
periodic domain, when o« = 1 and b = 2,3. As the width of the initial
Gaussian increases, the figures show that more peakons of width o = 1 are
emitted. (This is consistent with conservation of momentum.) The peakons
are observed to be stable for b > 1, they propagate as solitary traveling
waves, and they interact elastically. We shall discuss the peakon interactions
in more detail in sections 6 through 9.

4.4 Caseb<0

We shall examine the cases b = —0.5, —1, —2, —3, —4. Numerical results for
b = —2 and b = —3 are described in section 4.4.6. For other values of
b < 0 the analysis is similar, but it involves less elementary considerations
such as transcendental or hyperelliptic functions. The numerics shown later
will demonstrate that the elementary solutions discussed here, many of them
stationary, do tend to emerge in numerical integrations of the initial value
problem for equation (1) with b < —1.

4.4.1 Case b=-1/2

Figure 4 shows that a ramp and cliff pattern develops in the velocity profile
under the peakon equation (1) with g(x) = e~/*I/® for a set of Gaussian initial
conditions (5y/7) ! exp(—(x — 100)?/w) of increasing width w = 10, 15, 20,
for a =1 and b = —1/2. Apparently, the ramp solution is numerically stable
for b= —1/2.

4.4.2 Caseb=-1

For b = —1, equation (45) becomes

L2 du / (52)

172
[uQ—K(u—c)Z-i—ZH]

«

which integrates to

u++/u?— K(u—c)®+2H + Kc
c++vVc2+2H + Ke

o—lelfe

(53)
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Figure 4: Ramps and cliffs for b = —1/2. Inviscid b-family, b = —1/2,

a = 1, initial width w = 10, 15, 20.
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with u —c=0at z=0. (K =0 and H = 0 recovers the peakon traveling
wave.)

Remark 4.7 (Stationary plane wave solutions for b = —1) Equation (1)
for b = —1 1is satisfied for any wavenumber k by
m = cos(k(x — ct) + ¢o) and u= §(k)cos(k(z —ct)+ o), (54)

where g(k) is the Fourier transform of the kernel g(x) and ¢q is a constant
phase shift. In the absence of linear dispersion, these solutions are stationary,
¢ = 0. When linear dispersion is added to equation (1), these solutions are
the 1D analogs of Rossby waves in the 2D quasigeostrophic equations.

Figure 5 shows the velocity profiles under evolution by the peakon equa-
tion, (1) with g(x) = e~l*l/® for a set of Gaussian initial conditions of in-
creasing width w = 10,15, 20 for « = 1 and b = —1. Evidently, the coexisting
peakon solution for b = —1 does not emerge because K # 0 and H # 0 for
this initial condition. Instead, the stable solution is essentially stationary
with a slight rightward drift and leaning slightly to the right. The reason for
this lethargic propagation becomes clear upon writing the b-equation solely
in terms of the velocity u(z,t) as

g+ (b+ Duvy = 0 (Uggr + Ullggg + bUigliyg) (55)
b—1
b—3
= o0 (ut + uu, + Tui) .
Remark 4.8 (b = —1 is a turning point) When b = —1 the nonlinear

steepening term (b + 1)uu, vanishes in (55) and the residual propagation
18 due to its nonlinear “curvature terms” with higher order derivatives. In
the parameter regime b > —1 (resp. b < —1) the solutions of equation (1)
or (55) move rightward (resp. leftward), provided the curvature terms on the
right hand side of equation (55) are either negative or sufficiently small.

Remark 4.9 (Short wave limit equation) The high wavenumber, or short
wave, limit of equation (55) is

b—3
2 _— 2 =
0 (ut + uu, + 5 uw) 0. (56)

For b =2 and lim,_, _, u, = 0, this integrates to become the Hunter-Saxton
equation [31]. For b =3, it is the second derivative of the Burgers equation.
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Figure 5: Nearly-stationary solutions for b = —1
b= -1, a =1, initial width w = 10, 15, 20.

Inviscid b-family,
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Figure 6: Stationary solutions for b = —2. Inviscid b-family, b = —2,

a = 1, initial width w = 10, 15, 20.

4.4.3 Case b = —2 stationary solutions
For b = —2, the traveling wave quadrature (45) becomes an elliptic integral,
d _
+ EZ - dlu=c) (57)

u? — 2K (y — )3 + ZH] vz
3

The hyperbolic limit of this equation for H = 0 vanishes at infinity for the
stationary solution (¢ = 0) to give

u(z) = ——=sech® . (58)
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4.4.4 Case b = —3 stationary solutions

For b = —3, the hyperbolic limit H = 0 of equation (45) is

dz du
[u2 — %(u — 0)4]
which for ¢ =0 is p p
2 U
I]: E == 1/2 ’ (60)
u [1 — %uQ]

and may be integrated in closed form to obtain a continuous deformation of
the peakon,

e_|z|/a u
1+1-K/2 1++/1-Ku?2’

Rearranging equation (61) and scaling u by ug gives,

forb=-3, c=0and H=0. (61)

= §e|z|/a + (1 _ %)e—‘z‘/a )

(62)

with A =14+ /1 — K/2, so that A € [1,2] for K € [0,2]. For A =1, we
have u(z) = ugsech (z/a). And for A = 2, we recover the stationary peakon,
u(z) = ug e 1#/e,

4.4.5 Case b = —4 stationary solutions

For b < —4 the analytical expressions for the cnoidal waves become less ele-
mentary, because the integral in equation (45) is then hyperelliptic. However,
our numerics show that the dynamical behavior for b = —4 is similar to that
of the cases b = —2 and b = —3 shown in Figures 6-7. Namely, a series of
transient leftward propagating pulses, or leftons, of width alpha emerge and
tend to a nearly steady state. Consistent with momentum (area) conserva-
tion and the tendency toward pulses of width alpha, the number of emerging
leftons increases with the width of the initial Gaussian. At a longer time
scale, this train of pulses appears to tend toward stationary (¢ — 0).
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4.4.6 Numerical Results for b = —2 and b = -3

Figures 6 and 7 show that a series of leftons in the velocity profile emerges
under the peakon equation for a set of Gaussian initial conditions of increas-
ing width w = 10,15,20, for « = 1 and b = —2, —3. Apparently these are
not peakons, because the velocity at which they move is not equal to their
height. The leftons emerge from the initial Gaussian in order of height and
then tend toward a nearly stationary state. The number of emerging pulses
increases with the width of the initial Gaussian, as expected from momentum
(area) conservation and the tendency toward pulses of width alpha, and the
leftward speed of the emerging pulses increases with the magnitude of b. The
latter is consistent with the coefficient (b+ 1) of the nonlinearity in equation
(55) as b becomes more negative.

Figure 8 shows the leftons at time 7' = 2500, versus u(z) ~ sech®(z/(20))
for b = —2, and versus u(z) ~ sech(z/«) for b = —3. By this time, the leftons
have become stationary solutions with ¢ = 0 for both b = —2 and b = —3.

5 Pulson interactions for 6 > 0

As we have seen in section 4.3.1, the b-family of equations (1) admits the
pulson traveling wave solution (50) for b6 > 0. The interaction dynamics
among N of these pulsons is obtained by superposing the traveling wave
solutions u(x,t) = cg(x — ct) as

Zp, g(x —q(t)) and m(zx,t) sz (x —q;(t)), (63)

for any b > 0 and u = g * m, where the function g is even so that ¢'(0) =0
and bounded and we may set g(0) = 1. For these superpositions of pulsons
to be exact solutions, the time dependent parameters p;(t) and ¢;(t) must
satisfy the following /N —dimensional particle dynamics equations obtained
by substituting (63) into equation (1),

(64)

N
P = (1—b)pinj9'(Qi—CIj):(1_b) 0g
=1 IL

N

. oG

G = ) piglai—q)= va- (65)
.:1 2
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Figure 8: Stationary solutions for b = —2 versus u(z) ~ sech®(z/(2a)),
and for b = —3 versus u(z) ~ sech(xz/a). Inviscid b-family, b = —2, -3,

a = 1, initial width w = 10.
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Here the generating function Gy is obtained by restricting the norm ||m)|?
in (35) to the class of superposed traveling wave solutions (63), as

N
1
Gy = 3 Z pip; 9(¢i — ;) - (66)

t,j=1

Thus, the symmetric kernel g(z) determines the shape of the traveling wave
solutions (63), and these traveling waves interact nonlinearly via the pulson
dynamics of p;(¢) and ¢;(t) with s = 1,..., N in equations (64) and (65) for
b > 0. We shall see that the character of these interactions depends vitally
on the value of b.

5.1 Pulson interactions for b = 2

When b = 2, equations (64) and (65) describe the canonical dynamics of
a Hamiltonian system with N degrees of freedom. These are the geodesic
pulson equations studied in Fringer and Holm [22], in which the following
results are obtained:

e Equation (1) conserves the kinetic energy 3|lml||2 = 5 [*_ mg*mdz.

e Equations (64) and (65) describe canonical geodesic motion in an N—dimensional
configuration space whose co-metric is ¢”(¢) = g(¢; — ¢;)-

e The generating function G is the kinetic energy Hamiltonian for the
canonical geodesic motion.

e The solutions in (63) behave as particle-like pulses whose pairwise inter-
actions as determined by equations (64) and (65) comprise nonlinear,
but elastic, scattering events.

e The pairwise interactions for the pulsons can be solved analytically for
any symmetric function g(z).

Remark 5.1 As we shall show, the last two statements also hold for any
b>1.
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Figure 9: Peakons of width o for b = 2: collisions. Inviscid b-family,
b =2, a =5, initial width w = 5.
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Figure 10: Peakons of width « for b = 3: collisions. Inviscid b-family,
b =3, a = b, initial width w = 5.
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Figure 11: Peakons of width > a for b = 2,3: emergence of width-«o
peakons. Inviscid b-family, b = 2,3, a = 1, initial width w = 5.

5.2 Peakon interactions for b = 2 and b = 3: numerical
results

e Figure 9 shows the evolution of the velocity profiles in the 2-peakon
and 3-peakon interactions for b = 2, with g(z) = e 1®I/® and a pe-
riodic domain. The 3-peakon interaction decomposes into a series of
2-peakon interactions. These simulations verify the analytical results
for the 2-peakon interaction to three significant figures over propagation
distances of about sixty peakon widths.

e Figure 10 shows the evolution of the velocity profiles in the 2-peakon
and 3-peakon interactions for b = 3, with g(z) = e~ I*l/e and a periodic
domain.
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e Figure 11 shows that peakons of initial width greater than « break up
into peakons of width a under the evolution of the peakon equation
in a periodic domain at fixed values of « = 1 and b = 2,3. The
emitted peakons are stable, propagate as solitary traveling waves, and
interact elastically. Conversely, a peakon or other initial condition that
is narrower than a will decompose into two oppositely moving trains
of peakons and antipeakons, each of width a.

5.3 Pulson-Pulson interactions for b > 0 and symmet-
ric g

For N = 2, the pulson dynamics in equations (64) and (65) for b > 0 reduces
to

dp, 0G dps oG
B_q-pnZ P2
= 2 68
dt 8p1 ’ dt 5p2 ’ ( )
and the generating function from (66) is given by
1
G==(p} +p3) +pip2 901 — @) - (69)

2

The equations are canonically Hamiltonian only for b = 2, which includes
the Camassa-Holm case for which g(q; — ¢2) = e~'%~% gives the peakon
solutions.

Conservation laws and reduction to quadrature

Besides the total momentum
P =p +p2, (70)

the two-pulson system for b > 0 and symmetric g also conserves a second
quantity that is quadratic in p; and py, namely

H= p1p2(1 —9(q1 — (]2))b_1 . (71)

For a Hamiltonian system with two degrees of freedom this second con-
servation law would be enough to ensure integrability, by Liouville’s theorem.
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Even in the present case of b > 0 without a Hamiltonian structure, this will
be sufficient to reduce the 2-pulson system to quadratures.?

Following the analysis for the case b = 2 and arbitrary ¢ in Fringer and
Holm [22], we introduce sum and difference variables as

P=pi+p, Q=q+q, p=pr—p2, =G —G. (72)

In these variables, the generating function (69) becomes

1 1
G =P (1+9()+ 30°(1-9(0)), (73)
and the second constant of motion (71) becomes

-t (74)

1
H =2 (P* = p*)(1 - g(q))
Likewise, the 2-pulson equations of motion transform to sum and difference
variables as

dt 0
9 =29 = P(l+yg

— 0G _ 1
S
ar = 2% =p(l —g(q)).

e =201-b)55 =0,

Eliminating p? between the formula for H and the equation of motion for
q yields

g\’ .
(%) =Pa-ga)’ - 18- @) (75)
We rearrange this into the following quadrature,
dt = dg(9) , Z=P*(1- g(q))2 —4H(1 - g(q))3_b. (76)
9'(VZ

This simplifies to the quadratic Z = P2(1 —g(q))2 —4H when b = 3. For the
peakon case, we have g(q) = e? so that ¢'(¢) = g(¢) and the quadrature (76)
simplifies to an elementary integral for b = —1,0,1,2,3. Having obtained

3When b = 1, the momenta p; and p, are separately conserved and the problem
immediately reduces to quadratures in ¢ = ¢; — g2 and @ = g1 + ¢2.
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q(t) from the quadrature, the momentum difference p(t) is found from (74)
via the algebraic expression

AH
=P 77
g (1—g(q) 7

in terms of ¢ and the constants of motion P and H. Finally, the sum Q(t) is
found by a further quadrature. The remainder of the solution for arbitrary
b and g closely follows Fringer and Holm [22] for the case b = 2.

Upon writing the quantities H, P and G as

1 1 1
H=cc,, P=ci+cy, G:§c%+§c§=§P2—H, (78)

in terms of the asymptotic speeds of the pulsons, ¢; and ¢y, we find the
relative momentum relation,

40162
(1-g9@)™"

This equation has several implications for the qualitative properties of the
2-pulson collisions.

2

P =(c1+ )’ — (79)

Definition 5.2 Quertaking, or rear-end, pulson collisions satisfy cico > 0,
while head-on pulson collisions satisfy cico < 0.

The pulson order ¢; < g¢o is preserved in an overtaking, or rear-end,
collision when b > 1. This follows, as

Proposition 5.3 (Preservation of pulson order) For overtaking, or rear-
end, collisions when b > 1, the 2-pulson dynamics preserves the sign condi-
tion g =q — g2 <0.

Proof. Suppose the peaks were to overlap in a collision for b > 1, thereby
producing ¢ = 0 during a collision. The condition g(0) = 1 implies that the
second term in (79) diverges for b > 1 when the overlap occurs. However,
this divergence would contradict p? > 0. |

Consequently, seen as a collision between two initially well-separated
“particles” with initial speeds ¢; and ¢y, the separation ¢(t) reaches a nonzero
distance of closest approach ¢,,;, in an overtaking, or rear-end, collision that
may be expressed in terms of the pulse shape as,



D. D. Holm & M. F. Staley ~Wave Structures and Nonlinear Balances 41

Corollary 5.4 (Minimum separation distance) The minimum separa-
tion distance reachable in two-pulson collisions with cico > 0 1s given by

461 Co

(1= 9(gmin)) = CEYSE (80)

Proof. Set p? = 0 in equation (79). 0

Remark 5.5 We shall use result (80) later in checking the accuracy of our
numerical simulations of these two-pulson interactions.

Proposition 5.6 (Head-on collisions admit ¢ — 0) The 2-pulson dynam-
1cs allows the overlap ¢ — 0 when b > 1 in head-on collisions.

Proof. Because p? > 0, the overlap ¢ — 0 implying ¢ — 1 is only possible
in equation (79) with b > 1 for ¢ic; < 0. That is, for the case of head-on
collisions. |

Remarks about head-on collisions. For b > 1, equation (79) implies
that p? — oo diverges when ¢ — 0 in head-on collisions. The case b = 1 is
regular and equation (79) reduces to the constant relation p* = (¢; —cy)?. For
0 < b < 1, the quantity p? no longer diverges when ¢ — 0 and the solution
for the relative momentum in head-on collisions is again regular.

5.4 Pulson-antiPulson interactions for b > 1 and sym-
metric g

Head-on Pulson-antiPulson collision. We consider the special case of

completely antisymmetric pulson-antipulson collisions, for which p; = —py =

p/2 and ¢4 = —qo = ¢q/2 (so that P = 0 and @ = 0). In this case, the
quadrature formula (76) reduces to*

1 dq’

q(t)
:i:(t - t()) - 7/ — s
N/ —4H alto) (1 _ g(q,))(3 b)/2

(81)

4For b = 3, the quadrature formula (81) for the separation distance in the pulson-
antipulson collision reduces to straight line motion, q(t) — q(to) = £2¢(t — to).
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and the second constant of motion in (74) satisfies

b—1

—4H = p*(1—g(q)) (82)

After the collision, the pulson and antipulson separate and travel oppositely
apart; so that asymptotically in time g(q¢) — 0, p — 2¢, and H — —c?,
where ¢ (or —c) is the asymptotic speed (and amplitude) of the pulson (or
antipulson). Setting H = —c? in equation (82) gives a relation for the pulson-
antipulson (p, ¢) phase trajectories for any kernel,

(83)

Notice that p diverges for b > 1 (and switches branches of the square root)
when ¢ — 07, because g(0) = 1. In contrast, p remains constant for b = 1
and vanishes for b < 1 (and again switches branches of the square root) when
g — 0". Note that our convention for switching branches of the square root
allows us to keep ¢ > 0 throughout, so the particles retain their order.

Remark about preservation of particle identity in collisions. The
relative separation distance ¢(t) in pulson-antipulson collisions is determined
by following a phase point along a level surface of the second constant of mo-
tion H in the phase space with coordinates (¢, p). Because H is quadratic, the
relative momentum p has two branches on such a level surface, as indicated
by the =+ sign in equation (83). At the pulson-antipulson collision point, both
g — 0T and either 1/p — 07 or p — 07, so following a phase point through
a collision requires that one must choose a convention for which branch of
the level surface is taken after the collision. Taking the convention that p
changes sign (corresponding to a “bounce”), but ¢ does not change sign (so
the “particles” keep their identity) is convenient, because it allows the phase
points to be followed more easily through multiple collisions. This choice is
also consistent with the pulson-pulson and antipulson-antipulson collisions.
In these other “rear end” collisions, as implied by equation (79), the sepa-
ration distance always remains positive and again the particles retain their
identity.

Theorem 5.7 (Pulson-antiPulson exact solution) The exact analytical
solution for the pulson-antipulson collision for any b and any symmetric g
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Figure 12: Peakon-antipeakon collisions for b = 1, 2, 3. Inviscid b-family,
b=1,2,3, a =1, initial width w = 1.

may be written as a function of position x and the separation between the
pulses q for any pulse shape or kernel g(x) as

C

(1—g(q)

where ¢ is the pulson speed at sufficiently large separation and the dynamics
of the separation q(t) is given by the quadrature (81) with /—4H = 2c.

u(, q) = iy |9+ 4/2) = 9z~ 4/2)], (84)

Proof. The solution (63) for the velocity u(x,t) in the head-on pulson-
antipulson collision may be expressed in this notation as

ue,t) = Sg(a+q/2) - Sgla — q/2). (85)

In using equation (83) to eliminate p this solution becomes equation (84). O

Figure 12 shows the exact solutions for the Peakon-antiPeakon collision in
the cases b =1, b = 2, and b = 3. The positive and negative peaks approach
each other until the solution develops a negative vertical slope in finite time.
As the separation ¢ — 0, the positive and negative peaks “bounce,” thereby
reversing polarity, after which they separate in opposite directions.
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5.5 Specializing Pulsons to Peakons for b =2 and 0 =3

We now restrict to g(z) = e, the Green’s function for the 1D Helmholtz
operator satisfying

(1 - j_;)e|w| = 25(z). (86)

In this case, m = u — ouy,, the pulson traveling wave solution is given by
u(z,t) = cg(z — ct) = ce”*=°!l has a discontinuity in derivative at its peak,
and is called the peakon. For b = 2 and b = 3 in the peakon case, the main
results are:

6

e For b = 2 and g(x) = e ?l, equation (1) becomes the zero-dispersion

limit of the integrable Camassa-Holm equation for shallow water waves
discovered in Camassa and Holm [7]. Upon restoring its linear disper-
sion, this equation was recently proved to be a higher-order accurate
asymptotic description of shallow water waves in Dullin et al. [17].

For b = 3 and g(x) = e, equation (1) becomes the integrable partial
differential equation studied in Degasperis, Holm and Hone [15].

When g(z) = e~?l the N—peakon dynamics for both b = 2 and b = 3
turns out to be integrable — as is the dynamics of the original PDE (1).
The solutions of the initial value problem for (1) for both b = 2 and
b = 3 may be found analytically by using the Isospectral Scattering
Transform (IST) method.

The two cases b = 2 and b = 3 have quite different isospectral eigenvalue
problems. These are discussed in Camassa and Holm [7] and in Dullin
et al. [17] for the case b = 2, and in Degasperis, Holm and Hone [15]
for the case b = 3. See also Beals, Sattinger and Smigialski [6] for
a discussion of solving the inverse isospectral problem using classical
methods for the case b = 2 for initial momentum distributions m(z, 0)
of a single sign.

Peakons of width o for arbitrary b

When g = e~*/ we may invert the velocity-momentum relation u = g *xm
by using the Green’s function expression (86) with the Helmholtz operator



D. D. Holm & M. F. Staley ~Wave Structures and Nonlinear Balances 45

to find m = u — o®u,,. Hence, equation (1) may be rearranged into the local
momentum conservation law,

-1 -1
mtz—g(mu—i-bQ u2—b2 a2ui). (87)

This conservation law for peakons may also be rewritten in convection
form,

U+ Uy = — 7, with (1 —a?0?)T = qu - 3T_ba2ui. (88)
The two forms (87) and (88) of the b-family of equations (1) suggest that
values b = 0,1, 3 are special. These values of b are natural candidates for
boundaries, or bifurcation points for changes in solution behavior.
Equation (88) describes peakons of shape g(z) = e~1#l/*. This peakon
equation will form the basis of the rest of our study.

6.1 Slope dynamics for Peakons: inflection points and
the steepening lemma when 1 < b <3

We shall consider solution dynamics of equation (88) in the peakon case sat-
isfying (51), or equivalently, equation (1) with g(z) = e~1®I/*, which satisfies

(1 —a?d)e 1#/™ = 206(x) . (89)

For this case, and with vanishing boundary conditions at spatial infinity,
equations (88) and (89) imply the peakon equation on the real line,

1 = —|T— «
U+ utly = — /_Oo e~lz=yl/ (buuy +(3-— b)aQuyuyy> dy.  (90)

Taking the x—derivative gives the equation for the slope u,(z,t)

1 0 [*
Ugs + Ul + U2 = — S0 B / e lzyl/e (buuy +(3— b)aQuyuyy) dy
1 o0
=50 e 1Tyl gon (2 — g) (buuy + (3 — b)a2uyuyy> dy . (91)

We shall use these expressions to prove the following.

Proposition 6.1 (Peakon Steepening Lemma) For b in the range 1 <
b < 3 a sufficiently negative slope at an inflection point of u will become
vertical in finite time under the dynamics of the peakon equation (90).
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Proof. Following Camassa and Holm [7], we shall consider the evolution of
the slope u, at an inflection point x = Z(t). Define the slope at the inflection
point as s(t) = u,(Z(t),t) and note that wu,,(Z(t),t) = 0. Then equation (91)
yields the following evolution equation for s(t)

ds o 1 [Tam vl gz L9 22
s "5&5]Ci sgn (2(t) )Qay(bu +(3 bﬁxuy)dy(92)

Integrating by parts using the definition |y| = ysgn (y), so that d|y|/dy =
sgn (y) + 2y6(y), and recalling that yd(y) = 0, gives

R L T el GRS

Hence, in the range 0 < b < 3 the last term is negative and we have the slope
inequality,

ds b—1 b
0 < 2 2 <b<3.
7S ( 5 )s +2a2u for 0<b<3 (93)
We suppose the solution satisfies (bu?/a?) < M for some constant M.> Then,
ds b—1 M
— < — 24— A <b<3. 4
s ( 5 >3+2 or 0<b<3 (94)
Consequently, if b > 1,
dX X b1
Tz dcoth™(X) <V or S (95)

This implies, for s < —/ M initially negative, that

b—1M
- <
sgchoth(a—i-\/ i 2t) for 1<b<3, (96)

where the dimensionless integration constant ¢ < 0 determines the initial
slope, which is negative. Under these circumstances, the slope at the inflec-
tion point must become vertical by time ¢t = —20/y/M (b — 1).

O

5If this inequality is violated, we have another type of singularity. However, for b = 2,
the constant M can be estimated by using a Sobolev inequality. In fact, M = 4H;(u)/a?
because for this case we have

1 oo
max[u?(z,t)] < — / (u? + o*u?)dx = 2H; = const for b=2.
z€ER [0 2 PSS
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Remarks for 1 < b < 3.

e If the initial condition is antisymmetric, for 1 < b < 3, then the inflec-
tion point at v = 0 is fixed and dz/dt = 0, due to the mirror reflection
symmetry (u,z) — (—u, —x) admitted by equation (90). In this case,
M = 0 and equation (94) implies

ds<_(b—1

P (e = s<; (). o)

b—1\tg—t

Hence, verticality s = —oo will develop in finite time, regardless of how
small the initial slope [s(0)|, provided it is negative, s(0) < 0, as in
figure 12. If the initial slope is positive, then under this evolution it
will relax to zero from above.

e Consequently, traveling wave solutions of (90) cannot have the usual
sech-like shape for solitons because inflection points with sufficiently
negative slope can produce unsteady changes in the shape of the solu-
tion profile.

e In this context, for b = 2, a result in the paper [11] shows that the
slope of the solution u(z,t) is always bounded if the initial distribution
of momentum m(x,0) does not change sign.

Caveat Strictly speaking, the formal proof of the Peakon Steepening Lemma
in Proposition 6.1 requires additional regularity assumptions on the initial
data, since the slope function s(t) is generally not differentiable. However,
provided that the initial data is regular enough, e.g., initial velocity in the
Sobolev space u(x,0)€H?(R), this formal argument can be made rigorous.
See Theorem 2.1 in [12] for an example. Under this additional regularity
assumption, one finds that equations (93) and (94) in the proof hold almost
everywhere in time, but the result of the Proposition (96) holds everywhere.

6.2 Cases 0<b<1
In the range 0 < b < 1, we have from (25) that

/ |m|l/bda::/ imo|*®dx, where mg(z) = m(z,0). (98)
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This conservation law implies an elliptic regularity estimate showing that the
slope s = u, is always bounded under the dynamics of the peakon equation
(90). See [30] for a proof of this result and more discussion of its implications.

7 Adding viscosity to peakon dynamics

In the remainder of this paper, we shall restrict our one-dimensional consid-
erations to the peakon case g(z) = e~1*I/® with length scale «, and investigate
the fate of the peakon solutions when viscosity is introduced for given values
of b and «. For purposes of comparison with previous results in the literature,
we shall also extend equation (1) to a new family of equations that includes
the Burgers equation by introducing two additional real parameters. These
are the viscosity v and a multiplier 5 for the stress, or pressure gradient.
First, we shall introduce constant viscosity v > 0 into (1) to form the
viscous b-family of equations for the peakon case g(x) = e~1#l/e as follows,

my +  um, A+ bugm = vmgy , with m=u—a*u,. (99)
N——r N —’ ——

convection stretching  viscosity

As in equation (55), this equation with viscosity may be expressed solely in
terms of the velocity u(z,t) as

up+ (b4 Dutly — Vige = 0 (Upgt + Wgpy + WUglipy — Vilgges) (100)
b—1 ,

= a?0, (um + Ulgy — Vlggy + Tum)

b—3
= a%0? (ut + Uy — Vg, + Tui) .
Thus, the nonlinear steepening term increases with b as (b + 1)uu,. When

o — 0 the previous equation reduces to
g+ (b + Duny, — vug, =0, (101)

and one then recovers the usual Burgers equation either by rescaling di-
mensions, or by setting b = 0. For b = 2, equation (99) is the one-dimensional
version of the three-dimensional Navier-Stokes-alpha model for turbulence
[9]. For b = —1, the evolution in (100) occurs only by higher order terms.
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The viscous b-family of peakon equations (99) may be rearranged into two
other equivalent forms that are convenient for introducing a stress multiplier.
These are either its equivalent conservative form,

mt:_(?—a:(mu+ 5 U T a2ui)+umm, (102)

or its equivalent convective form,

(1- ozzai)(ut + uuy — l/um) =—0, (guZ + 3T_ba2u§> ) (103)

Stress multiplier 5. Next, we shall introduce a stress multiplier 8 as a
second parameter that for 5 # 1 deforms the convective form of the viscous
b-family of equations (103) into the following family of Burgers-like equations
with four parameters b, o, v and £,

Up + Uy — Vg = — B1, with (1 —a?0))T = —u® + ——a’u

. (104

When = 0, the Burgers—af3 equation (104) recovers the usual Burgers
equation. When S = 1, equation (104) recovers the viscous b-family of
peakon equations (99).

We shall seek solutions of the Burgers—a/3 equation (104), either on the
real line and vanishing at spatial infinity, or in a periodic domain, for various
values of its four parameters b, o, v and 3. Under these boundary conditions,
when 5 — 1, equation (104) recovers the convective form (103) of the viscous
b-family for peakons with g(z) = e~ 1®l/*. Thus, the viscous b-family of
equations (99-103) deforms into the Burgers—a/3 equation (104) when 8 # 1
and the Burgers—af equation (104) reduces to the usual Burgers equation
when 5 = 0. We shall be interested in the effects of the four parameters b,
a, v and f on the solutions of the Burgers—af equation (104). We shall be
interested especially in the fate of the peakon solutions upon introducing the
parameters v and 3 so as to retain H} control of the velocity. As we shall
see, such control requires a special relation between the parameters b and S,
namely, (3 —b)5 = 1.
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7.1 Burgers—af equation: analytical estimates

Proposition 7.1 (H! control of the velocity) The Burgers—af3 equation
(104) controls the a—weighted H' norm of the velocity,

el %2 :/ (v® + o*u) dz
for o® # 0, provided (3 —b)3 = 1.

Proof. The spatial derivative of the Burgers—a/3 equation (104) yields the
dynamics for the slope s = u, as

Up + Uly — VUgy = _5Tw7
S;+USy + 5% —USpy = —BTyy, With §=uy,
b 3—b
_0427—:6:6 = §U2+—2 CYZUCZC—T.

In turn, these slope dynamics equations imply the following evolution of the
a—weighted H' density, cf. equation (92),

2

1 2 0 [1 b
%(5“2 n %52) = 5 <§ (1 — 7/8)“3 + Bur + %usQ + vuuy, + Va2ss$)
2

a2 2.2 A (ra _ 3
vu vars, + 2((3 b)s 1)3.

T T

Thus, provided
B3-b)p=1,

the last term will vanish. Under this condition, for periodic or vanishing
boundary conditions the a—weighted H' norm

o0
lulfy = [ (o + o) da

—0oQ

will decay monotonically under the Burgers—a/3 dynamics for a? # 0.
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Remarks.

e When v — 0 in the Burgers—af3 equation, the a—weighted H' norm
is conserved for (3 — b) = 1. This relation cannot be satisfied for
b = 3. Thus, the proof of decay of the a—weighted H' norm under the
Burgers—af dynamics is inconclusive for v # 0 when b = 3. However,
one can expect on physical grounds that this norm will also decay for
b = 3 if v is sufficiently large.

e We shall restrict our remaining considerations to those values of b and
B for which the a—weighted H' norm is bounded, or decays mono-
tonically. In one dimension, this control of the a—weighted H' norm
implies the solution for the velocity will be continuous.

e Namely, we shall consider the following cases with (3 —b)3 =1
(b=0, 8 =1/3), (b=1, # = 1/2) and (b=2, f = 1).

Proposition 7.2 (Burgers—af Steepening Lemma) Forb and 3 in the
range (3 — b)B < 2 a sufficiently negative slope at an inflection point of
velocity u will become vertical in finite time under the dynamics of the inviscid
Burgers—af equation, (104) with v = 0.

Proof. The proof follows that for the Peakon Steepening Lemma 6.1 and
uses the slope equation following from the Burgers—af equation (104) with
v = 0 that corresponds to (91) for the Peakons, modified to include g,

_F 2/ e~lz=yl/a <buuy +(3— b)a2uyuyy) dy

2
Ugt + Ulgy + U, = —
2002 J_o

_ B ["

= 502 e 1Tyl gon (2 — g)) (buuy + (3 — b)a2uyuyy) dy. (105)

Equation (105) yields the inviscid Burgers—af evolution of the slope s(t) =
uz(Z(t),t) at an inflection point x = Z(t) as
ds s BM

ES_(Q_B_W)EJFT for 0<b<3. (106)

This holds provided we assume the solution satisfies (bu?/a?) < M for some
constant M. Consequently, if 2 — (3 — b)3 > 0, we have

2—(3-b)8

=dcoth ' (X) < VM for X = Y7 (107)

dX
1—X2
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For s < —+/ M initially negative and § > 0, this implies

2 (3-bB M 2
sSx/Mcoth(a—% M—ﬁ7t) for 0§3—B<b§3, (108)

where the dimensionless integration constant ¢ < 0 determines the initial
slope, which is negative. Under these circumstances, provided the inflection
point continues to exist, its negative slope must become vertical by time

t = =20 Mg
=\ =3-05"
O

Caveat As for the Peakon Steepening Lemma in Proposition 6.1, this for-
mal proof for Proposition 7.2 via the slope dynamics for s(t) requires an
additional assumption of regularity on the initial data to make it rigorous.
Under the additional regularity assumption u(z,0)€H?(R), one may show
as in [12] that (106) holds almost everywhere in time, while the result (108)
holds everywhere.

Corollary 7.3 (Inviscid Burgers—af shocks) Solutions of the inviscid
Burgers—af3 equation (104) with v = 0 that remain continuous in velocity
must develop negative vertical slope in finite time.

Proof. According to Proposition 7.1, continuity of the velocity and, hence,
control of the H' norm ||ul/g: requires that (3 —b)f = 1. This is in the
parameter range where Proposition 7.2 applies. Consequently, verticality
will form at an inflection point of negative slope under the dynamics of the
inviscid Burgers—a/3 equation (104) with v = 0 for (3 — )5 < 2. a

Remark 7.4 Hence, to remain continuous without viscosity, the solution
of the inviscid Burgers—af3 equation must either develop verticality at an
inflection point of negative slope, or it must evolve to eliminate such points
entirely.

7.2 Burgers—af traveling waves for 5(3—0) =1 & v =0
For v = 0, the Burgers—af3 equation (104) has traveling waves given by

b 3—0
(u—c)u'+p7'=0 and T—aZT"=§u2+Ta2(u')2, (109)
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which yields after one integration
2

%—cu+BT=K, (110)

where K is the first integral. Consequently, we find
T—&QTHZ%(K-l‘cu—%2+042((U—C)UH+(UI)2)>. (111)
The second equation in (109) integrates for the special case of 5(3 — b) = 1,
2Ku + cu® — Bu + o*(u —c)(u')? = 2H . (112)

For the special case K = (0 = H this becomes
o(u—c)(u')?=(Bu—cju* for B3-b)=1, (113)

and we recover the peakon solution u(z) = ce”*//* for # = 1. In the general
case that K # 0 and H # 0, we rearrange equation (112) into the following
quadrature for inviscid Burgers—af3 traveling waves,
d —c)l2d
+ 2= (u=c) " du o5 for BB-b)=1&v=0. (114)
[QH —2Ku — cu? + ﬁu?’}

«

In what follows, we shall consider the cases (b =0, 5=1/3), (b=1,8=1/2)
and (b=2, 5 =1) when v # 0.

8 The fate of peakons under (1) adding vis-
cosity and (2) Burgers—af evolution

8.1 The fate of peakons under adding viscosity

The following set of four figures shows the effects on the initial value problem
for the viscous b-equation (99) of varying « and b at fixed viscosity for an
initial velocity distribution given by a peakon of width w = 5 and initial
height U ~ 0.1. The parameter b takes the values b = 0,1,2,3. In these four
figures, the resolution is 2!3 points on a domain size of 200 with viscosity
v = 0.005. This corresponds to a grid-scale Reynolds number of Rep, =
UAzx/v = O(1) for velocity U ~ 0.1. The pair of figures after these four then
shows the effects on the same problem of increasing viscosity v at fixed « for
b=2and b=3.
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Figure 13: Effect of increasing o for b = 0. Viscous b-family, b = 0,
a=1/4,1,4, v = 0.005, initial width w = 5.

Figure 13 shows three plots of the evolution of the velocity profile under the
viscous b-equation (99) of an initial peakon of width five, as a function
of increasing o = 1/4,1,4 at fixed viscosity v = 0.005 for b = 0. The
peakon leans to the right and develops a Burgers-like triangular shock,
or ramp and cliff, whose width increases and peak height decreases as
a increases. These three plots show no discernable differences for b = 0
as the viscosity is decreased to v = 107%. Hence the width of the cliff
in the ramp and cliff structure for b = 0 is set by the value of « in this
range of parameters.

Figure 14 shows three plots of the same type of evolution from a peakon
initial condition of width w = 5, as « is varied for b = 1. The front
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Figure 14: Effect of increasing o for b = 1. Viscous b-family, b = 1,
a=1/4,1,4, v = 0.005, initial width w = 5.

of the ramp and cliff structure propagates faster and is sharper for
b =1 than for b = 0 when a = 1/4 and o = 1. This increase in speed
appears to occur because the coefficient increases in the steepening term
(b 4+ 1)uu, in equation (100). A nascent peakon begins to form close
behind the front at the top of the ramp, then eventually gets absorbed
into the ramp and cliff. For a = 4, however, this nascent peakon forms
more completely and nearly escapes.

Figure 15 again shows three plots of the evolution from a peakon initial
condition of width w = 5, as « is varied, this time for b = 2. The ramp
and cliff structure is faster for b = 2 than for b = 1 when o = 1/4.
When a = 1 a series of three nascent peakons forms close behind the
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Figure 15: Effect of increasing o for b = 2. Viscous b-family, b = 2,
a=1/4,1,4, v = 0.005, initial width w = 5.

front, then overtakes the ramp and cliff structure and slightly affects its
propagation before eventually being absorbed. For a = 4, however, the
initial peakon simply propagates and decays under viscosity, although
it is slightly rounded at the top.

Figure 16 also shows three plots of the evolution from a peakon initial
condition of width w = 5, as « is varied, this time for b = 3. The
ramp and cliff structure moves faster yet, and a single nascent peakon
appears just behind the front already for « = 1/4. When « = 1, a series
of three nascent peakons forms initially close behind the front and they
nearly escape before being slowed by viscosity. The leading peakon
decays and slows due to viscosity. Then the following ones overtake



D. D. Holm & M. F. Staley ~Wave Structures and Nonlinear Balances 57
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Figure 16: Effect of increasing o for b = 3. Viscous b-family, b = 3,
a=1/4,1,4, v = 0.005, initial width w = 5.

and collide with the ones ahead as the ramp and cliff structure forms.
These collisions occur at higher relative velocity for b = 3 than for b = 2
and they significantly affect the propagation and eventual formation of
the ramp and cliff. In contrast, for a = 4, the initial peakon keeps its
integrity and simply propagates rightward and decays under viscosity.
The propagating peakon for o = 4 at this viscosity decays more slowly
and is sharper at the top for b = 3 than for b = 2.

Remark 8.1 (Exchange of stability) 7o see the exchange of stability be-
tween the ramp/cliff structure and the peakon as b changes, we perform the
following numerical experiment. First, we run the viscous b-equation (99)
with b = 0, o = 1, v = 107°, and an initial peakon of width w = 5. As



D. D. Holm & M. F. Staley ~Wave Structures and Nonlinear Balances 58

we see in Figures 17 and 18, this evolves into the ramp and cliff formation
even for nearly zero viscosity. Once the final ramp/cliff state is formed, we
then use it as the new initial condition for equation (99) with either b =2 or
b = 3. The new evolution breaks the ramp/cliff structure into peakons and
the new final state is a rightward moving train of peakons ordered by height.

For Figures 19 and 20, we ran the same numerical experiment, this time
with a value o = 5 equal to the width of the initial peakon. The initial peakon
“borrows from the negative” to form a ramp, which is not quite antisymmetric
because the total area of the initial peakon must be preserved. At timeT = 150
we switch to b = 2 (top plot) or b = 3 (bottom plot), and again observe a
train of stable peakons emerging from the now-unstable ramp.

Finally, for Figures 21 and 22, we again run the numerical experiment
with = 1 and an 1nitial peakon width w = 5, but this time changing to
b= —2 or b= —3 after the ramp has formed. The new evolution breaks the
ramp /cliff structure into leftons like those in Figures 6 and 7.

Remark 8.2 (Increasing viscosity) The effect of increasing viscosity on
the evolution of the peakon initial condition can be estimated from the a—scale
Reynolds number defined by,

Re, =Ua/v = (a/Az)Rep -

For (a/Ax) =40, U = 0.1 and increasing viscosity v, the Reynolds numbers
Rea, and Re, decrease as

Rea, ~2,0.2,0.02 and Re, =~280,8,0.8 for v =0.01,0.1,1.0.

Perhaps not surprisingly, when Re, = O(1) the viscosity will diffuse through
the initial peakon before it can fully form. Figures 23 and 24 show that this
effect increases as Re, decreases.

8.2 The fate of peakons under Burgers—af evolution

Figures 25 and 26 show the effects on the peakon initial value problem for
the Burgers—af evolution of varying « and b with (3 — b)5 = 1 at constant
viscosity. We shall consider the following cases with (3 —b)5 = 1:

b=0,5=1/3,»=0.005 o =1/4,1,4, and
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b=0 to T=2500, then b=2 to T=5000
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Figure 17: Exchange of stability between ramps and peakons for
b =0,2,3, when width > «. Viscous b-family, b = 0 — 2,3, a = 1,
v = 107, initial width w = 5.
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T=0, T=2500 (switch from b=0 to b=2), T=5000
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Figure 18: Exchange of stability between ramps and peakons for
b = 0,2,3, when width > a: profiles. Viscous b-family, b = 0 — 2,3,
a =1, v = 107", initial width w = 5.
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b=0 to T=150, then b=2 to T=400
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Figure 19: Exchange of stability between ramps and peakons for
b =0,2,3, when width = «. Viscous b-family, b = 0 — 2,3, a = 5,
v = 107, initial width w = 5.
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T=0, T=150 (switch from b=0 to b=2), T=300
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Figure 20: Exchange of stability between ramps and peakons for
b =0,2,3, when width = a: profiles. Viscous b-family, b = 0 — 2, 3,
a =5, v = 107", initial width w = 5.
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3, when width > «a. Viscous b-family, b = 0 — —2
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Figure 21: Exchange of stability between ramps and leftons for b =
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v = 107°, initial width w =5
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T=0, T=2500 (switch from b=0 to b=-2), T=7500
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Figure 22: Exchange of stability between ramps and leftons for b =
0,—2,—3, when width > «: profiles. Viscous b-family, b =0 — —2, -3,
a =1, v =107°, initial width w = 5.
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Figure 23: Effect of increasing viscosity for b = 2. Viscous b-family,
b=2,a=1,v=1/100,1/10,1, initial width w = 5.
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Figure 24: Effect of increasing viscosity for b = 3. Viscous b-family,
b=3,a=1,v=1/100,1/10,1, initial width w = 5.
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b=1,8=1/2,v=0.005 a=1/4,1,4.

Remark 8.3 (Lowering 3 has little effect on the ramp/cliff) Lowering
B to follow (3 —b)5 = 1 instead of keeping 5 =1 has little effect on the de-
velopment of the ramp/cliff solution for b = 0 and b = 1. Lowering (3 for
these cases only makes the activity slightly less lively at the front for (b =0,
f=1/3) and (b=1, B =1/2) than for the corresponding cases of b =0 and
b=1 with 8 =1 in Figures 13 and 14. This lessened activity at lower 3 can
only be discerned in the solution for the largest value o« = 4. The remaining
case (b =2, B = 1) recovers the viscous b-equation (99) for b = 2 in Figure
15, wn which the larger b produces much livelier steepening and, hence, more
actiwity at the front of the rightward moving pulses.

9 Numerical results for peakon scattering and
initial value problems

We shall begin by summarizing the results in the figures given earlier, and
then we shall describe the numerical methods used in producing them and
discuss some of the ways we verified and validated the results.

9.1 Peakon initial value problems
9.1.1 Inviscid b-family of equations

Ramps and cliffs for b = 0. Figure 1 shows the formation of a ramp and
cliff pattern for b = 0, = 1, and a set of Gaussian initial conditions
of increasing width w = 2.5, 5, 10.

Peakons for b = 2, 3. Figures 2 and 3 show the formation of peakons for
b=2and b= 3, for « =1 and a set of Gaussian initial conditions of
increasing width w = 2.5, 5, 10.

Ramps and cliffs for b = —1/2. Figure 4 shows the formation of a ramp
and cliff pattern for b = —1/2, @ = 1, and a set of Gaussian initial
conditions of increasing width w = 10, 15, 20.
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Figure 25: Effect of increasing o when (3 —0)5 = 1, for b = 0 and
g =1/3. Burgers-af, b=0, a =1/4,1,4, § = 1/3, v = 0.005, initial width
w = 3.
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Figure 26: Effect of increasing o when (3 — )5 = 1, for b = 1 and
g =1/2. Burgers-af, b=1, a =1/4,1,4, = 1/2, v = 0.005, initial width
w=>5.
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Stationary solutions for b < —1. Figure 5 shows an essentially station-
ary solution with a slight rightward drift and leaning slightly to the
right due to nonlinear curvature terms with higher order derivatives
in equation (55), for & = 1 and a set of Gaussian initial conditions of
increasing width w = 10, 15, 20. For the same « and same set of initial
conditions, Figures 6 and 7 show the emergence of leftons.

Figure 8 shows the leftons at time 7" = 2500 for the b = —2 case,
versus the analytical u(x) =~ sech?(x/(2a)) from equation (58), and for
the b = —3 case, versus the analytical u(z) ~ sech(z/«).

Peakons of width o for b = 2,3. Figures 9 and 10 show 2-peakon and
3-peakon interactions for b = 2 and for b = 3, beginning with initial
peakons of width w = o = 5.

Peakons of width > o for b = 2,3. Figure 11 shows the emergence of
peakons of width @ = 1 when we begin with peakons of width w =5
greater than o, for b =2 and b = 3.

Peakon-antipeakon collisions for b = 1,2,3. Figure 12 shows the dy-
namics of a peakon-antipeakon collision for b =1, b = 2, and b = 3, for
a = 1, at four successive times.

9.1.2 Viscous b-family of equations

Effect of o for b = 0,1,2,3. Figures 13 — 16 show the evolution of an
initial peakon of width w = 5 as a function of increasing o = 1/4,1,4
at fixed viscosity v = 0.005, for b=0,b=1,b=2, and b = 3.

Exchange of stability between ramps and peakons. Figures 17 and 18
show the exchange of stability between ramps and peakons suggested
in the previous four figures, with o = 1 and an initial peakon of width
w = 5, but this time with a very small viscosity v = 107° so that
the peakons, when stable, do not noticeably decay. The exchange of
stability occurs when we switch from b =0 to b =2 or b = 3. Figures
19 and 20 again show the exchange of stability, this time using a = 5
so that the initial peakon has width .

Exchange of stability between ramps and leftons. Figures 21 and 22
show the exchange of stability as in Figures 17 and 18, but we switch
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to b = —2 or b = —3 instead, and see the emergence of stable leftons
from the ramp.

Effect of viscosity for b = 2,3. Figures 23 and 24 show the effect of
increasing viscosity ¥ = 0.01,0.1, 1 on the evolution of an initial peakon
of width w =5, with o« =1 and b =2 or b = 3.

9.1.3 Burgers-af equation

Effect of @ when (3 — b)3 = 1. Figures 25 and 26 show the effect of
increasing @ = 1/4,1,4 on the evolution of an initial peakon of width
w = 5, for fixed v = 0.005 and two sets of values for b and [ for which
(3—b)=1:b=0, f=1/3 for the first figure, and b= 1, 5 = 1/2 for
the second figure.

9.2 Description of our numerical methods

For our numerical runs we advanced equations (88), (103), and (104) with an
explicit, variable timestep fourth/fifth order Runge-Kutta-Fehlberg (RKF45)
predictor /corrector. We selected the timestep for numerical stability by trial
and error, while our code selected the timestep for numerical accuracy (not
to exceed the timestep for numerical stability) according to the well-known
formula from numerical analysis,

, 1/p
hy = vhy (M> . (115)

s — |

This is used in the following way. At step i of the calculation, we know the
predicted solution w;, the corrected solution u;, and the previous timestep
h;_1. The predictor’s order of accuracy is p = 4, while the corrector’s order
of accuracy is p+1. A new timestep h; is chosen from (115) based on the old
timestep h;_1 and the norm of the difference between the current predicted
and corrected solutions. We used a very strict relative error tolerance per
timestep, € = 1078, a safety factor v = 0.9, and an L, norm || - [o.

We computed spatial derivatives using 4th order finite differences, gen-
erally at resolutions of 2'* = 8192 or 2'* = 16384 zones. To invert the
Helmholtz operator in transforming between m(z,t) and u(z,t), we con-
volved m(x,t) with the Green’s function in Fourier space. When the nu-
merical approximation of the nonlinear terms had aliasing errors in the high
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wavenumbers, we applied the following high pass filtered artificial viscosity,

0 if 0<Fk<3Z,
v(k) =% (k-%) if ¥ <k<?ZY, (116)
6 it 2X<k<N,

where 6 = 0.01 for the present simulations. NN is one-half the number of
zones, because for each zone we have both a Fourier sine coefficient and a
Fourier cosine coefficient.

The quality of the numerical convergence may be checked analytically in
the case of rear-end two-pulson collisions, for which equation (80) in Corollary
5.4 yields

4cqc9 1/(6-1)

1 ()

p=0 (c1 4 ¢2)?

For peakons with b = 2 and g(x) = e~/ this formula gives the minimum
separation,

Q(Qmin) = g(Q) (117)

C1 — C2
Gmin = 2aln(01+02) >0, (118)
When ¢; =1, ¢ = 1/2, and a = 5, as in figure 9, this formula implies i, =
10In3 = 10.9861. Our numerical results with the resolution of 2'* zones
yield @i, = 11.0049. The very small discrepancy, less than 0.2%, occurs
largely because our numerical measurement of ¢, is obtained by examining
the peakon positions at each internal timestep in the code, while the code’s
time discretization effectively means we’re unlikely to land exactly on the
time at which the minimum separation occurs. The code’s true accuracy is
thus better than the above measure indicates, because the intermediate steps
involved in advancing the solution from one discrete time to the next with
an RKF45 method cancel the higher-order discretization errors.

Likewise, for peakons with b = 3 and g(z) = e 1*//*, formula (117) gives
the minimum separation,

ﬂ) >0. (119)

min — — 1 1-
q OZn( (C1+C2)/2

When ¢; = 1, ¢ = 1/2, and o = 5, as in figure 10, this formula implies
Gmin = 5In(3/(3 — +/8)) = 14.3068. This time our numerical results yield
Gmin = 14.2924, a discrepancy of only 0.1%.
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Of course, the two-body collision is rather simple compared to the plethora
of other multi-wave dynamics that occurs in this problem. For this reason, we
also checked the convergence of our numerical algorithms by verifying that
the relative phases of the peakons in the various figures remained invari-
ant under grid refinement. Moreover, the integrity of the waveforms in our
figures attests to the convergence of the numerical algorithm — after scores
of collisions, the waveforms given by the Green’s function for each case are
still extremely well preserved. The preservation of these soliton waveforms
after so many collisions would not have occurred unless the numerics had
converged well.

10 Conclusions

Equation (1) introduced a new family of reversible, parity invariant, evolu-
tionary 141 PDEs describing motion by convection and stretching,

my + um, + buym = 0, with u=g*xm. (120)
— ——

convection stretching

We analyzed the transformation properties and conservation laws of this
family of equations, which led us to choose g to be an even function. Then
we classified its traveling waves and numerically identified the bifurcations of
its traveling wave solutions as a function of the balance parameter b. For some
choices of the convolution kernel g(x) we studied its particle-like solutions
and their interactions when b > 1. These were obtained by superposing N
traveling wave solutions u(z,t) = cg(x — ct) as

sz g(x —q;(t)) and m(z,t) ZpZ (x —q(t)), (121)

for any real constant b and u = g * m, in which the function g is even
g(—x) = g(z), so that ¢’(0) = 0, and is bounded, so we may set g(0) = 1.
Following [22], we call these solutions “pulsons.” We have shown that
for any b > 1, once they are initialized on their invariant manifold (which
may be finite dimensional), the pulsons undergo particle-like dynamics in
terms of the moduli variables p;(t) and ¢;(t), with ¢ = 1,..., N. The pulson
dynamics we studied for b > 1 in this framework on a finite-dimensional
invariant manifold displayed all of the classical soliton interaction behavior



D. D. Holm & M. F. Staley ~Wave Structures and Nonlinear Balances 74

for pulsons found in [22] for the case b = 2. This behavior included pair-
wise elastic scattering of pulsons, dominance of the initial value problem by
confined pulses and asymptotic sorting according to height — all without re-
quiring complete integrability. Thus, the “emergent pattern” for b > 1 in the
nonlinear evolution governed by the convection equation (1) was the right-
ward moving pulson train, ordered by height. The moduli variables p;(t) and
¢i(t) are collective coordinates on an invariant manifold for the PDE motion
governed by equation (1). Once initialized for b > 1, these collective degrees
of freedom persist and emerge as a train of stable pulses, arranged in order
of their heights, that then undergo particle-like collisions.

In contrast, the emergent pattern in the Burgers parameter region 0 <
b < 1 is the classic ramp/cliff structure as in Figure 13. That the behavior
should depend on the value of b is clear from the velocity form of equation
(1) written in (100),

g+ (b+ Dutly — Vigy = 0 (Uggr + Wllgpe + Dliglipy — Vigees) (122)

b—1
= OzQ&B (uwt + UUgy — VUgpr + 2 ui)

b—3
= a28§<ut+uum—yum+ 5 ui)

Thus, nonlinear terms in this equation change sign at four integer values of
the parameter b. Nonlinear o®>—terms change sign when b = 0,1,3. Also,
the nonlinear steepening term increases with b as (b + 1)uu,. So this term
changes sign when b = —1. In the parameter regime b > —1 (resp. b < —1)
the solutions of equation (1) move rightward (resp. leftward), provided the
terms on the right hand side of equation (122) are sufficiently small.

Three regions of b. We found that the solution behavior for equation (1)
changes its character near the boundaries of the following three regions in
the balance parameter b.

(B1) In the stable pulson region b > 1, the Steepening Lemma for peakons
proven for 1 < b < 3 in Proposition 6.1 allows inflection points with
negative slopes to escape verticality by producing a jump in spatial
derivative at the peak of a traveling wave that eliminates the inflection
points altogether. Pulson behavior dominates this region, although
ramps of positive slope are also seen to coexist with the pulsons. When
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b<-1 -1<b<i 1<b

Figure 27: Leftons (b < —1), ramps and cliffs (—1 < b < 1), and peakons
(b > 1) are solutions of the b-family of equations, m; + umg + bu,m = 0, with
m=u— a’Uy,.

b < 1 we found the solution behavior of the convection equation (1)
changed its character and excluded the pulsons entirely.

(B2) In the Burgers region 0 < b < 1, the L** norm of the variable m
is controlled® and the solution behavior is dominated by ramps and
cliffs, as for the usual Burgers equation. Similar ramp/cliff solution
properties hold for the region —1 < b < 0, for which the L'/® norm of
the variable 1/|m| is controlled. At the boundary of the latter region,
for b = —1, the convection equation (1) admits stationary plane waves
as exact nonlinear solutions.

(B3) In the steady pulse region b < —1, pulse trains form that move leftward
from a positive velocity initial condition (instead of moving rightward,
as for b > —1). These pulse trains seem to approach a steady state.

Figure 27 illustrates this solution behavior in the region B3 at left, B2 in
the center, and B1 at right. For illustrative purposes, the curves are drawn
at different scales; recall that the evolution of equation (1) preserves the area
under the curve.

Effects of viscosity. Almost any numerical investigation will introduce
some viscosity, or other dissipation. Consequently, we studied the fate of the
peakons when viscosity was added to the b-family in equation (99). Viscous
solutions of equation (99) for the peakon case g(x) = e~*l/* with a = 1
were studied in each of the three solution regions (B1)-(B3). In the Burgers
region (B2) near b = 0 we focused on the shock-capturing properties of the

6For b = 0, this is a maximum principle for |m|.
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solutions of equation (1) and this family of equations was extended for 3 # 1
to the Burgers—af3 equation (104),
. 292 b o 3=0b,,

Ut + Uy — Ve = — BT, with (1 —a®05)T = U + U
According to Proposition 7.1, the Burgers—af3 equation (123) controls the
a—weighted H'! norm of the velocity for o # 0, provided (3 —b)3 = 1. This
analytical property guided our study of this new equation by identifying
a class of equations for which a priori estimates guarantee continuity of the
solution u(zx,t). The shock-capturing properties of the Burgers—af equation
(123) and its o — oo limit will be reported in a later paper [28].

(123)

11 Outlook: the vector b—equation for com-
pressible motion of momentum filaments
and surfaces in n—dimensions

We shall generalize to n—dimensions the one-dimensional pulson solutions of
equation (1) with defining relation (2) studied earlier in section 5.

11.1 n—dimensional vector b—equation

In n—dimensional vector notation, the b—equation (1) may be written explic-
itly in Euclidean coordinates as a partial differential equation for a co-vector
function m(x,t) : R™ x R* — R™. Namely,

0
pr + u- Vr.n +¥VuT -m + (bv— 1)m(divu) =0, (124)
convection stretching

for a defining relation,
u=Grm= [G(x-y)mly)d"y, (125)

in which we assume the function (filter) G(|x|) is isotropic. To interpret the
stretching terms in the vector b—equation (124), we shall recall the interpre-
tation of the scalar b—equation (1) as preservation at constant Lagrangian
coordinate X of the differential form (28),

m(x,t)dz® = m(X,0)dX®°. (126)
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Taking the partial time derivative of this equation at constant Lagrangian
coordinate X and using dz/dt|x = u yields equation (1), as shown earlier in
equation (29).

To lift this interpretation of the vector b—equation to n dimensions, we
regard the momentum m(x,t) as the vector coefficient in an invariant one-
form density expressed as,

m(x, t) - dx ® (dV)® =Y = m(X,0) - dX @ (dV,)® Y, (127)

where dV = d™x and dVy, = d™X are, respectively, the Eulerian and La-
grangian volume elements. The symbol ® denotes tensor product. Taking
the partial time derivative of this equation at constant Lagrangian coordinate

X and using % x = u yields,

X
i‘ (m-dx @ (dV)®0Y) = dm - dx @ (V)@
dt1x dt 1x

+ m-du® (dV)®®-V (128)

+(b—1)m-dx® (V- -u)dV)®t1 =0,

We have used the identities, %Lglx = du = u dz’ and %Lgi\/ = (divu)dV

for the Lagrangian time derivatives of the line element dx and the vol-
ume element dV. Collecting coefficients in equation (127) yields the vector
b—equation (124) and explains the sources of its convection and stretching
terms.

Equivalently, in terms of the operators div, grad and curl, in 2D and 3D,
the Euclidean-coordinate vector b—equation (124) becomes,

%m—u><curlm-i—V(u-m)—i—(b—1)m(divu)=O. (129)

Euler-Poincaré (EP) equation Setting b = 2 in the vector b—equation
in either of its equivalent forms, (124) or (129), yields the pressureless Euler-
Poincaré (EP) equation, whose abstract form is [26, 27],

§¢[u]

o
Omtadm=0, m="1 (130)
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and adjm is defined as in equation (124) for b = 2. Thus, we have the EP
equation for pressureless compressible motion in vector notation,

2m + u-Vm +\VuT-m+m(divu) =0, m:@. (131)

5 : = _ ou
convection EP stretching

When the Lagrangian ([u] is taken as the kinetic energy, which is also a
norm, ([u] = $|lu||?, then the EP equation (131) describes geodesic motion
on the diffeomorphism group, with respect to this kinetic energy norm.

For b = 2, the scalar product of the EP equation in div-grad-curl form
(129) with the velocity u shows that evolution under this equation preserves
the kinetic energy,

/u-md”xz(u,m), (132)

as a constant of the motion, only for this value of b. For the case that velocity
is defined in terms of momentum as u = G * m in equation (125), we shall
assume that the convolution kernel G may be taken as the Green’s function
for a symmetric positive definite operator @),,. We may then write

Qopu =m, (133)

where u satisfies appropriate boundary conditions for the relation u = G*m
to be satisfied. When @, is assumed to be a symmetric positive definite
operator, the kinetic energy in equation (132) will define a kinetic energy
norm ||u||? that may be written as,

||u||2:/u-md"mz/u-@opud"x: (u, Qupu), (134)
for appropriate boundary conditions at spatial infinity. Hence, we have

Proposition 11.1 (b =2 vector b—equation for geodesic motion)
When the defining relation (125) between momentum m and velocity u
may be written equivalently in operator form as (138) with a symmetric,
positive definite operator Q, for which (134) defines a norm, then for b =
2 the vector b—equation (124), or (129), describes geodesic motion on the
diffeomorphism group, with respect to this kinetic energy norm.
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EP equation for computational anatomy Thus, the EP equation (131)
describes geodesic motion when the Lagrangian ([u] is the kinetic energy,
which is also a norm. This EP equation has the same form as the template
matching equation [38], which is used in computational anatomy [37].

11.2 n—dimensional analogs of pulsons for the vector
b—equation

The momentum for the one-dimensional pulson solution (63) on the real line
is supported at points via the Dirac delta measures in its solution ansatz,

m(z,t) = Zpi(t) 6(z —q(t)), meR. (135)

For the vector b—equation (124), or (129), we shall develop n—dimensional
analogs of these one-dimensional pulson solutions by generalizing the solution
ansatz to allow measure-valued n—dimensional vector solutions. In these
solutions, the momentum m € R" is supported on co-dimension—k subspaces
R™* moving with the flow, where k € [1,n] is an integer. In an example in
section 11.2.3, we shall consider a two-dimensional vector momentum m &
R? in the plane that is supported on one-dimensional curves (momentum
fronts). Likewise, in three dimensions, one could consider two-dimensional
momentum surfaces (sheets) and one-dimensional momentum filaments, each
moving with the local flow velocity. The corresponding vector momentum
ansatz that we shall use is a vector version of the pulson solutions (135),
namely,

m(x, 1) = Z/Pi(s,t) 5(x—Qi(s,t))ds, meR". (136)

Here, P;,Q; € R" fori =1,2,..., N. For example, when n — k = 1, so that
the Lagrangian coordinate s € R! is one-dimensional, the delta function in
solution (136) supports an evolving family of vector-valued curves, which we
shall call momentum filaments. (For simplicity of notation, we suppress
the implied subscript 7 in the arclength s for each P; and Q;.) The defining
relation u = G * m in (125) implies that the velocity corresponding to the
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momentum filament ansatz (136) is,

u(x,t) =G*m= Z/Pj(s',t) G(x—Q,(s,t))ds . (137)

The function (filter) G(|x|) defined in (125) is isotropic, so G'(0) = 0.
We shall choose G(0) = 1, so P;(s',t) is the velocity of the j—th fila-
ment at x = Q;(s',t) and s'€R' is a Lagrangian coordinate along the fil-
ament. Just as for the 1D case of the pulsons in equations (64) and (65),
we shall show that substitution of the n—D solution ansatz (136) and (137)
into the vector b—equation (124) produces a closed system of equations for
the n—dimensional vector parameters Q;(s,t) and P,(s,t), i = 1,2,..., N.
When b = 2, these equations will become geodesic Hamiltonian equations for
canonically conjugate variables, Q;(s,t) and P;(s, ).

11.2.1 Momentum filaments in R"

For definiteness, we shall consider the example of momentum filaments, for
which the parameter s is one dimensional. Such filaments have vector-valued
momenta m € R" supported on one-dimensional space curves in R", so
s € R! in equation (136) is the arclength parameter of one of these curves.
This solution ansatz is reminiscent of the Biot-Savart Law for vortex fila-
ments, although the flow is not incompressible. The dynamics of momentum
surfaces, for s € R*¥ with k < n, follow essentially the same analysis as that
given below for k£ = 1.

Substituting the momentum filament ansatz (136) for s € R! and its cor-
responding velocity (137) into the vector b—equation (124), then integrating
against a smooth test function ¢(x), implies the following equations, in which
summation is explicit on j € 1,2,... N and there is no sum on 1,

%Qi(s,t) :; / P;(s',t) G(Qi(s,t) — Q;(s',t) )ds', (138)

%Pi(s,t) _ —; / (Py(s,)-P; (s, 1)) %G(Qi(s,t) Qs 0) ds’

—(b—2)Py(s, 1) Z/Pj(s',t) : aQiLMG(Qi(s,t) —Q;(s,1)) ds’.

Jj=1
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The dot product P; - P; denotes the inner, or scalar, product of the two
vectors P; and P, in R". Thus, the solution ansatz (136) yields a closed set
of integro-partial-differential equations (IPDEs) given by (138) for the vector
parameters Q;(s,t) and P;(s,t) with i = 1,2... N. Equations (138) for the
n—dimensional dynamics of the momentum filaments should be compared
with the 1D pulson equations (64) and (65). Note that b = 2 is a simplifying
special case.

11.2.2 Canonical Hamiltonian dynamics of momentum filaments
in R" for b =2

For b = 2, the momentum filament equations (138) simplify to canonical
Hamiltonian equations,

O T (VR

ot oP;’ ot
The corresponding Hamiltonian function Hy : (R" x R™")®N — R is,

(139)

Hy =5 [[ 30 (Bl ) Py ) G(Qu(s. 1) ~ Q1)) s (140)

i,j=1

This Hamiltonian arises by substituting the momentum ansatz (136) into the
kinetic energy norm (134). Thus, for b = 2, the evolutionary IPDE system
(138) represents canonically Hamiltonian motion on the space of curves in
R"™. Moreover, this Hamiltonian motion for b = 2 is geodesic with respect to
the co-metric given on these curves in (140) by the Green’s function G. The
Hamiltonian Hy = £||P||* in (140) for this motion defines the norm [|P|| in
terms of this co-metric.

Summary The momentum filament ansatz (137) reduces, or collects the
solution of the evolutionary vector b—equation (124) for b = 2 in n spatial
dimensions into the system (138) of 2V evolutionary IPDEs in one spatial
dimension (arclength along each filament). For b = 2, the collective equations
describe geodesic flow on the space of vector-valued curves in R™ with respect
to the co-metric given on these curves in (140).
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The momentum filament equations (138) are not typical As far
as we know, the IPDEs for momentum filaments in (138) have never been
considered before in the literature, even for the Hamiltonian case b = 2.
Even the Hamiltonian evolution of a single momentum filament interacting
with itself has not appeared in the literature, to our knowledge. There is
a faint similarity of this system to vortex dynamics for the incompressible
Euler equations. However, there are also fundamental differences. The main
difference from the Hamiltonian motion of vortex filaments is that the mo-
mentum filaments possess inertia, while vortex filaments do not. Thus, N
vortex filaments in an incompressible flow are described by N first-order
equations, while N momentum filaments in a pressureless compressible flow
are described by the 2N first-order equations in (138). The main question
one would like to answer is, “When do the momentum filament solutions
represent the dominant emergent pattern in the initial value problem for the
vector b—equation (124)?” The next subsection reports an example in which
this occurs, for momentum filaments in the plane, in a certain approximation
for 2D shallow water waves.

11.2.3 Zero-dispersion shallow water waves in 2D: Two interesting
choices for the operator (),, when b =2

The operator (), in the momentum relation m = @Q,yu in (133) correspond-
ing to m = u — a?uy, in the 1D CH equation (11) for zero-dispersion shallow
water waves may be defined in two dimensions as either of two natural choices,

m=u-a’Au, or m=u-co’Vdivu. (141)

For the first choice of momentum definition in (141), the vector EP equation
(131) corresponds to the (pressureless) Euler-alpha model, whose Lagrangian
([u] = %||ul|? is the conserved H' norm,’

|5 =/u (1= a’A)udz dy :/|u|2 + o*(divu)® + o®|curlu|’ dz dy .

"When incompressibility (divu = 0) is imposed as an additional constraint in this
Lagrangian via a Lagrange multiplier (the pressure), then the corresponding vector EP
equation (131) becomes the 2D Lagrangian averaged Euler equation derived in [26] as a
generalization of the 1D CH equation for incompressible flow. The Hamilton’s principles
defined by the kinetic energy norms ||ul|3,; and ||u]|% g have no pressure constraint, so
their corresponding EP equations (131) allow compressible motion.
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The last equality assumes either homogeneous, or periodic boundary condi-
tions, so that boundary terms may be neglected upon integrating by parts.

For the second natural choice of momentum in (141), the conserved kinetic
energy norm becomes, instead,

ul%s = /u- (1—-a’Vdiv)udzdy = / lu? + o*(divu)? dz dy,

and kinetic energy conservation no longer controls curlu. This is the norm
associated with vertically-averaged kinetic energy that arises when one ap-
proximates the Green-Naghdi equations for shallow water motion by ne-
glecting variations in surface elevation in the potential energy and in the
Lagrange-to-Euler Jacobian.® The second term proportional to o approxi-
mates (twice) the vertically-averaged kinetic energy due to vertical motion.
For more details of the latter approximation for the 2D CH shallow water
equation, see Kruse and Schreule [34].
The EP equation (131) was numerically integrated in [29], in the form

%m—u x curlm + V(u-m)+ m(divu) =0, (142)
for both choices of the momentum-velocity relation in equation (141). This
numerical integration was performed by using a difference scheme that pre-
served the properties of the operators div, grad and curl (diveurl=0 and
curlgrad=0). The main discovery in the numerical results of [29] was that
the evolution of the geodesic PDE (142) was found to be dominated by
the emergent dynamics of momentum filaments, arising from confined initial
conditions for either choice of momentum-velocity relation in equation (141).
Thus, the momentum filament solutions in both of these cases were stable,
and no other types of solution were observed in the numerical evolution of

81In this approximation for 2D shallow water waves, curlm = curlu and divm =
(1 — a?A)divu. Thus, setting u = z x V¢ — V¢ allows one to solve for the stream
function v and velocity potential ¢ from the momentum m via,

Z-curlm=—A¢ and divm=—A(1-a?A)é.

These two relations allow one to update the potentials ¢ and ¢ for the velocity u, given
the momentum m at each time step, provided these potentials satisfy boundary conditions
that allow inversion of the Laplacian operator for ¢ and the Helmholtz-Laplace operator
for ¢. Whether these boundary conditions are consistent with the diffeomorphism group
is an open question.
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equation (142) in the periodic plane. The dynamics of the momentum fila-
ments that emerged was quasi-one-dimensional, with greater variation of the
solution in the direction transverse to the filaments than along the tangential
direction. Thus, the interaction dynamics for the momentum filaments was
found to be dominantly in the direction transverse to the filaments. This
meant the filament interaction was governed primarily by elastic-scattering
dynamics reminiscent of the one-dimensional solutions, as seen in soliton
dynamics. In fact, the one-dimensional soliton collision rules were found
to provide a good interpretation of the interactions among the momentum
filaments. These interactions were found to allow reconnection of the quasi-
one-dimensional momentum filaments. For more information and discussion
of numerical results, see [29].
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